Abstract:
A toroid pressure vessel includes a toroid body having an inner shell and an outer shell. The toroid body includes a toroid outer perimeter. The outer shell extends along the toroid outer perimeter. A planar exterior face extends along at least a portion of the outer shell and the toroid outer perimeter. A support belt circumscribes the toroid outer perimeter and is coupled along the planar exterior face. The support belt braces and supports the pressure vessel along the toroid outer perimeter against bulging force (and hoop stress) generated by pressurized fluids within the vessel. The support belt facilitates the use of thinner pressure vessel shells and thereby decreases the weight of the pressure vessel while providing a support to the outer shell that substantially prevents deformation of the planar exterior face.
Abstract:
A multivalve with a storage bag and a storage bag configured for temporarily accommodating a liquid gas fuel around a discharge for a liquid gas fuel store formed from a deformable memory material, wherein the storage bag has a temporary, size-reduced position, an outer diameter of the storage bag then being less than 48 mm, and a second, operative position, the storage bag having a sufficient volume. A multivalve with a storage bag includes a storage bag having a bottom with sides rising from the bottom, a one-way valve being placed in or close to the bottom and connected to an inlet in the storage bag, the one-way valve being welded to the plastic of the storage bag.
Abstract:
An end fitting for a cylindrical high pressure vessel made from components all having thin walls, thereby tripling the practical diameter of such pressure vessels. The end fitting includes a toroidal shell defining a hole; centrally disposed piece for closing the hole comprising a pipe and a center end fitting and structural members. In a first embodiment, the structural members comprise slices of an end of the pipe welded to the outer cylindrical wall of the vessel. In a second embodiment, the structural members are plates connecting the pipe to the outer cylindrical walls. In the third embodiment, the plates connect an extension of the outer cylindrical wall beyond the toroidal shell to an extension of the outer cylindrical wall of the pressure vessel. The center end fitting may be hemispheric or ellipsoidal.
Abstract:
An end fitting for a cylindrical high pressure vessel made from components all having thin walls, thereby tripling the practical diameter of such pressure vessels. The end fitting includes a toroidal shell defining a hole; centrally disposed piece for closing the hole comprising a pipe and a center end fitting and structural members. In a first embodiment, the structural members comprise slices of an end of the pipe welded to the outer cylindrical wall of the vessel. In a second embodiment, the structural members are plates connecting the pipe to the outer cylindrical walls. In the third embodiment, the plates connect an extension of the outer cylindrical wall beyond the toroidal shell to an extension of the outer cylindrical wall of the pressure vessel. The center end fitting may be hemispheric or ellipsoidal.
Abstract:
In a propellant tank, which especially serves for storing cryogenic propellants, for example of spacecraft, and which is operated with a driving gas serving as a conveying medium, the separation of the propellant from the driving gas occurs in a propellant extraction apparatus by means of sieves and with the use of hydrostatic forces and capillary forces. The extraction apparatus has the form of a refillable reservoir, which is mounted in the vicinity of the tank floor outside of the tank shell on the floor region of the propellant tank, and which is connected via a number of holes with the interior of the propellant tank. The extraction apparatus itself consists of a double-walled housing and is additionally thermally insulated. Capillary plates and additional struts are inserted in an L-shape into the reservoir. Furthermore, to substantially prevent the penetration of gas out of the propellant line, a cylinder-shaped pleated sieve is mounted at the end of the propellant line.
Abstract:
A hydrogen storage and delivery system is provided having an orifice pulse tube refrigerator and a liquid hydrogen storage vessel. A cooling system, coupled to the orifice pulse tube refrigerator, cools the vessel and abates ambient heat transfer thereto in order to maintain the liquid hydrogen in the vessel at or below its saturation temperature. Hydrogen boil-off, and the necessity to provide continuous venting of vaporized hydrogen are minimized or avoided. In a preferred embodiment, the hydrogen storage vessel has a toroidal shape, and the pulse tube refrigerator is a two stage pulse tube refrigerator and extends within a central void space defined at the geometric center of the toroidal storage vessel. Also in a preferred embodiment, the cooling system includes first and second thermal jackets, each having a substantially toroidal shape and enclosing the storage vessel, wherein each of the thermal jackets is thermally coupled to one of the first or second stages of the pulse tube refrigerator in order to cool the vessel and to abate ambient heat leak thereto. The hydrogen storage and delivery system is particularly suitable for use in vehicles, such as passenger automobiles.
Abstract:
The tank for storing gas at high pressure, such as a tank for a vehicle running on gas, comprises a confinement volume accessible via coupling means and defined by a duct disposed in a spiral coil so that the substantially rectilinear main portions of the duct bear against one another. The forces exerted by the pressure of the gas on the main portions of a turn of the duct are then compensated by the forces exerted on the adjacent turns of the duct.
Abstract:
A gas storage system formed of a continuous pipe wound in plural layers, each layer having plural loops. The pipe may be distributed within a container, which may serve as a carousel for winding the pipe and as a gas containment device. When containers, each containing a continuous pipe are stacked upon each other, the weight of upper containers may be born by the walls of lower containers, thus preventing lower layers of pipe from suffering stresses due to crushing by upper layers. A method of transporting gas to a gas distribution facility including obtaining a supply of gas at a gas supply point remote from the gas distribution facility, injecting the gas into a continuous pipe bent to form plural layers, each layer including plural loops of pipe, transporting the continuous pipe along with the gas to the gas distribution facility preferably in a ship and discharging the gas at the gas distribution facility. It is preferred that cooling of the pipe during discharging of the gas be conserved so that during subsequent filling the pipe is initially cool. Also, in a further aspect of the invention, during filling, the gas pressure should be maintained as constant as possible for example by controlled release of an incompressible liquid from the pipe as the pipe is filled with gas. Energy from the incompressible liquid may then be recovered or dissipated outside of the pipes.
Abstract:
A centrifugal propellant depot positioned in outer space for storing and transferring cryogenic liquid propellants to and from transfer space vehicles which are adapted to transport cryogenic liquid propellants to the depot to receive the liquid propellants stored in the depot. The depot includes a plurality of contra-rotatable torus-shaped hollow storage tanks adapted to receive cryogenic liquid oxygen and hydrogen propellants that are carried in gas/liquid phase separation by rotational gravity. Transport rail members transversely bridge the storage tanks. A central docking hub is coupled to the transport rail members and disposed centrally of the rotating storage tanks. The docking hub may receive a transfer space vehicle on either of two opposing sides of the hub for transfer, via a transfer vehicle coupled to the rail members, outwardly to the storage tanks. The space vehicle may be flipped from an inwardly reclining position for draining of the liquid propellant into a storage tank outwardly to a position for receiving liquid propellant from a storage tank. A radially movable counterweight is also coupled to the rail members for movement as the space vehicle is carried by the transfer vehicle and transfer of liquid propellant is accomplished to ensure that the center of gravity of the depot is maintained at the central docking hub for gyroscopic stability. The counterweight includes an encapsulated hydrogen absorber, such as Lanthanum-Nickel 5 to sore waste hydrogen for further use. The rotating storage tanks of the depot are provided with variable interior baffles to ensure that the liquid propellant contained therein rotates at the same rotational speed as the storage tanks. Solar panels are attached to the depot to provide electricity.