Abstract:
Using an LED element as a light source, a photometric unit including the light source, a light receiving element and other components therebetween is reduced in size. A holder 30 detachable from the device as a unit holds a light emission unit 15 formed of an LED and a light receiving element 21, and the holder is placed inside a thermostatic chamber 18 which holds a constant temperature fluid 17. Thus, the photometric unit is reduced in size.
Abstract:
The invention relates to a method and a microelectronic sensor device for making optical examinations in an investigation region (3). An input light beam (L1) is emitted by a light source (20) into said investigation region (3), and an output light beam (L2) coming from the investigation region (3) is detected by a light detector (30) providing a measurement signal (X). An evaluation unit (40) provides a result signal (R) based on a characteristic parameter (e.g. the intensity) of the input light beam (L1) and the output light beam (L2). Preferably, the input light beam (L1) is modulated with a given frequency (ω) and monitored with a sensor unit (22) that provides a monitoring signal (M). The monitoring signal (M) and the measurement signal (X) can then be demodulated with respect to the monitoring signal, and their ratio can be determined. This allows to obtain a result signal (R) that is largely independent of environmental influences and variations in the light source.
Abstract:
The invention relates to an apparatus for the spectral diagnosis of substances and/or surfaces having a radiation source (2) which can be variably adjusted over a predetermined spectral range and whose emitted radiation is focused onto a sample (7) to be examined, wherein a first optical sensor unit detects a radiation component, which is influenced by the sample (7) to be examined, as a useful signal (8.2) and forwards it to an evaluation and control unit (5), and to an associated method. According to the invention, the radiation source (2) comprises a light-emitting diode (2.1) with a predetermined emission wavelength which can be varied between a first emission wavelength and a second emission wavelength by a dynamic change in temperature of the light-emitting diode within the predetermined spectral range, wherein a second optical sensor unit (4) detects a component of the emitted radiation as a reference signal (8.1) and forwards it to the evaluation and control unit (5) for error compensation purposes.
Abstract:
The present invention relates to methods and apparatus for detecting and measuring the concentration of a substance in a solution, the substance having an absorption at 300 nm or less. The methods and apparatus have particular utility in detecting and measuring the concentration of proteins and nucleic acids.
Abstract:
The present invention relates to a device for measuring both the colour and turbidity of a liquid sample. (16,40,48) LEDs are used as light sources and reference detectors (13,44) are included to control the output of the LEDs. The device is also capable of monitoring and correcting for fouling of optical surfaces. The device is intended to be installed in-line in a main water supply line. The device can be used in domestic water meters or on sewage treatment sites to monitor the effluent discharged back to the river.
Abstract:
The invention relates to a device (1) for emitting electromagnetic radiation, in particular UV radiation, comprising at least one radiating means (2) which only emits radiation at visible wavelengths. According to the invention, the device comprises a unit for detecting a functional error of the radiating means. In practice, the radiating means (2) is provided for emitting only UV radiation and/or IR radiation and is formed by a light diode. In an embodiment of the invention, the detection unit (3) is designed to continuously monitor the radiating means (2) for functional errors, and the device (1) comprises an open-loop and/or closed-loop control unit (4) which is provided to automatically switch off the radiating means (2) and/or display the functional error, upon detection of the functional error by the detection unit (3).
Abstract:
The invention relates to a device for inspecting eggs for the presence of blood. The device comprises a light source in order to pass light at a first wavelength which is not selectively absorbed by blood and light at a second wavelength which is selectively absorbed by blood through an egg to be inspected. Furthermore, the device comprises detection means for converting the light transmission through the egg to be inspected for each of the two wavelengths into corresponding signals, each of the said signals being representative of the light transmission at the relevant wavelength. The device also comprises signal-processing means which are transmission associated with the first wavelength and the light transmission associated with the second wavelength based on the signals emanating from the detection means and to emit a decision signal which is representative of the decision whether or not an egg contains blood on the basis of this ratio. According to the invention, the light source comprises one or more identical LED's (Light Emitting Diode) for generating light which passes through the egg. In use the one or more LED's emit light within a certain narrow spectrum, which spectrum comprises both the first and the second wavelength.
Abstract:
An instrument for processing and/or measuring a biological process contains a sample processing system, an excitation source, an excitation optical system, an optical sensor, and an emission optical system. The sample processing system is configured to retain a first sample holder and a second sample holder, wherein the number of sample cells is different for each sample holder or a characteristic dimension for the first sample cells is different from that of the second sample holder. The instrument also includes an excitation source temperature controller comprising a temperature sensor that is coupled to the excitation source. The temperature controller is configured to produce a first target temperature when the first sample holder is retained by the instrument and to produce a second target temperature when the second sample holder is retained by the instrument.
Abstract:
An automatic analyzing apparatus which can make an adjustment to a target temperature so as to stabilize the light intensity of an LED and also can make the adjustment to that temperature in a short time is provided. The automatic analyzing apparatus in which an LED is used for a light source 114 includes a temperature adjusting mechanism 201 for the LED, and the temperature adjusting mechanism 201 includes a metal member 202 provided with the light source 114, a pair of metal pipes (water-flowing pipes) 203 buried in the metal member 202 and allowing constant-temperature bath water to flow therein, and pins (small metal piece members) 204 bringing only a heat-generating lead 252 of the light source 114 into direct contact with the metal member 202. Therefore, the temperature adjusting mechanism 201 can make an adjustment to a target temperature so as to stabilize the light intensity of the LED, and the adjustment to that temperature can be made in a short time.
Abstract:
This invention provides a reader device (10) for a test strip (14) (in particular an immunoassay test strip). The reader device has a channel (12) for receiving the test strip, and a movable sensor (26, 28, 30) located adjacent to said channel. The sensor comprises a source of radiation (26) and a detector (28, 30) for detecting the intensity of emitted radiation. The reader device also has a calibrating attenuator (50) allowing variations in the intensity of radiation emitted by the source to be detected and thereby eliminated or compensated. The invention also provides a method of using the reader device.