Abstract:
The invention relates to a device for inspecting eggs for the presence of blood. The device comprises a light source in order to pass light at a first wavelength which is not selectively absorbed by blood and light at a second wavelength which is selectively absorbed by blood through an egg to be inspected. Furthermore, the device comprises detection means for converting the light transmission through the egg to be inspected for each of the two wavelengths into corresponding signals, each of the said signals being representative of the light transmission at the relevant wavelength. The device also comprises signal-processing means which are transmission associated with the first wavelength and the light transmission associated with the second wavelength based on the signals emanating from the detection means and to emit a decision signal which is representative of the decision whether or not an egg contains blood on the basis of this ratio. According to the invention, the light source comprises one or more identical LED's (Light Emitting Diode) for generating light which passes through the egg. In use the one or more LED's emit light within a certain narrow spectrum, which spectrum comprises both the first and the second wavelength.
Abstract:
On-board non-uniformity correction calibration methods for a microbolometer focal plane array in a thermal camera are disclosed. The methods include performing first calculations in the processor unit of the thermal camera to generate and apply a set of coarse correction bias voltages to the detector elements. The method also includes performing calculations in the external computer based on image data collected by the thermal camera with the coarse correction bias voltages applied to the detector elements to generate a set of fine correction bias voltages. The method also includes downloading the fine correction bias voltages to the thermal camera and applying the fine correction voltages to the detector elements to establish a fine calibration of the microbolometer focal plane array.
Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
On-board non-uniformity correction calibration methods for a microbolometer focal plane array in a thermal camera are disclosed. The methods include performing first calculations in the processor unit of the thermal camera to generate and apply a set of coarse correction bias voltages to the detector elements. The method also includes performing calculations in the external computer based on image data collected by the thermal camera with the coarse correction bias voltages applied to the detector elements to generate a set of fine correction bias voltages. The method also includes downloading the fine correction bias voltages to the thermal camera and applying the fine correction voltages to the detector elements to establish a fine calibration of the microbolometer focal plane array.