Abstract:
An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
Abstract:
Presently disclosed is a lighting system and methods of using the lighting system for in vitro potency assay for photofrin. The lighting system includes a lamp housing, a first lens, an infrared absorbing filter, an optical filter, and a second lens. The lamp housing includes a lamp and a light-port. In operation, broad spectrum light from the lamp exits the lamp housing by passing through the light-port. The first lens then collimates the broad spectrum light that exits the lamp housing through the light-port. The infrared absorbing filter then passes a first portion of the collimated broad spectrum light to the optical filter and absorbs infrared light of the broad spectrum light. The optical filter then passes a second portion of the collimated broad spectrum light to the second lens. The second lens then disperses the second portion of the collimated light to provide uniform irradiation of a cell culture plate. A method of using the lighting system for studying a photosensitizer is also disclosed.
Abstract:
The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.
Abstract:
A system for lighting a stent, i.e., providing an illumination source, to facilitate the capturing of an image of the stent. The lighting is provided so that an image capturing device, e.g., a digital camera or system, will capture an image that distinctly shows the difference between the stent and any surface upon which the stent is mounted, in addition to sharply defining the edges of the stent struts.
Abstract:
In a first aspect, a system for analysing a fluid sample is provided, comprises: a container configured to receive the fluid sample; a first light source optically coupled to the container and configured to project a first light having a first wavelength; a second light source optically coupled to the container and configured to project a second light having a second wavelength different from the first wavelength; one or more photo-sensors optically coupled to the container and configured to analyse the fluid sample in response to a first scattered light generated in response to projecting the fluid sample with the first light source and a second scattered light generated in response to projecting the fluid sample with the second light source. In a preferred embodiment, the nutritious compositions (such as the concentration of fats and protein) of milk samples are identified based on the scattering of the first and second light source by the milk sample.
Abstract:
The present disclosure describes a device (1) for measuring an optical absorption property of a fluid as function of wavelength. The device comprises a broadband light source (2) for emitting light, a plurality of integrated optical waveguides (3) for guiding this light and a light coupler (10) for coupling the emitted light into the integrated optical waveguides (3) such that the light coupled into each integrated optical waveguide (3) has substantially the same spectral distribution. The device also comprises a microfluidic channel (5) for containing the fluid, arranged such as to allow an interaction of the light propagating through each waveguide (3) with the fluid in the microfluidic channel (5), and a plurality of spectral analysis devices (8) optically coupled to corresponding waveguides (3) such as to receive the light after interaction with the fluid. The spectral analysis devices (8) are adapted for generating a signal representative of a plurality of spectral components of the light.
Abstract:
An integrated circuit (100) is presented, comprising: a first optical unit comprising: a RAMAN spectrometer (102); an OCT spectrometer (103); an interferometer (104) optically coupled to the OCT spectrometer; and a light coupler (105), positioned to couple scattered and reflected light from illuminated tissue into the RAMAN and OCT spectrometer (102, 103); and an imaging region (106) optically coupled to the RAMAN and OCT spectrometer (102, 103). Further, a system and method to measure the concentration of an analyte in tissue is presented.