Abstract:
A first device comprises: a memory configured to store a first sub-graph that is part of a distributed graph associated with a distributed graph processing network; a processor coupled to the memory and configured to: process the first sub-graph; and save, independently of a second device in the distributed graph processing network, a first snapshot of a first execution state of the first device at a first iteration time; and a transmitter coupled to the processor and configured to transmit the first snapshot to the second device or to a third device.
Abstract:
Examples of the present disclosure describe implementing bitmap-based data replication when a primary form of data replication between a source device and a target device cannot be used. According to one example, a temporal identifier may be received from the target device. If the source device determines that the primary replication method is unable to be used to replicate data associated with the temporal identifier, a secondary replication method may be initiated. The secondary replication method may utilize a recovery bitmap identifying data blocks that have changed on the source device since a previous event.
Abstract:
Crash recovery with asynchronous consistent snapshots in persistent memory stores of a processing environment. A processing environment includes a user program and infrastructure-maintained data structures. The infrastructure-maintained data structures include a log of updates made to program data structures and a snapshot of the state of the program data structures. The systems and methods include writing log entries in the log to a transient memory. The log entries correspond to store instructions and memory management instructions operating on a nonvolatile memory (NVM), and input/output (I/O) operations executed by program instructions of the user program. Each of the log entries represents an effect of a corresponding operation in the program instructions. The systems and methods also include creating a snapshot in the NVM after a consistent program point based on the log of updates. The snapshot provides a rollback position during restart following a crash.
Abstract:
Embodiments of the present invention relate to asynchronously replicating data in a distributed computing environment. To achieve asynchronous replication, data received at a primary data store may be annotated with information, such as an identifier of the data. The annotated data may then be communicated to a secondary data store, which may then write the data and annotated information to one or more logs for eventual replay and committal at the secondary data store. The primary data store may communicate an acknowledgment of success in committing the data at the primary data store as well as of success in writing the data to the secondary data store. Additional embodiments may include committing the data at the secondary data store in response to receiving an instruction that authorizes committal of data through a identifier.
Abstract:
An apparatus, system, and method are disclosed for continuously protecting data. A mirror module mirrors a primary record set to a base record set. A log module accumulates each record change to the primary record set in a log. A change selection module selects a record change from the log. A change application module applies the selected record change to the base record set to form a recovered record set.
Abstract:
Methods, systems, and configured storage medium are provided for flexible data mirroring. In particular, the invention provides many-to-one data mirroring, including mirroring from local servers (200) running the same or different operating systems and/or file systems at two or more geographically dispersed locations. The invention also provides one-to-many data mirroring, mirroring with or without a dedicated private telecommunications link, and mirroring with or without a dedicated server or another server at the destination(s) to assist the remote mirroring unit(s) (208). In addition, the invention provides flexibility by permitting the use of various combinations of one or more external storage units and/or RAID units to hold mirrored data. Spoofing, SCSI and other bus emulations, and further tools and techniques are used in various embodiments of the invention.