Abstract:
A highly compact bandpass filter that has excellent mechanical strength is disclosed. A bandpass filter according to the present invention employs a dielectric block of substantially rectangular prismatic shape constituted of a first portion lying between a first cross-section of the dielectric block and a second cross-section of the dielectric block substantially parallel to the first cross-section and second and third portions divided by the first portion and metal plates formed on surfaces of the dielectric block. The first portion of the dielectric block and the metal plates formed thereon are enabled to act as an evanescent waveguide. The second portion of the dielectric block and the metal plates formed thereon are enabled to act as a first resonator. The third portion of the dielectric block and the metal plates formed thereon are enabled to act as a second resonator. The metal plates include an inductive stub formed on the surface of the first portion of the dielectric block.
Abstract:
A highly compact and easily fabricated band pass filter is disclosed. A band pass filter according to the present invention employs a first half-wave (null/2) resonator having a first open end on which an input terminal is formed and a second open end opposite to the first open end, a second half-wave (null/2) resonator having a third open end on which an output terminal is formed and a fourth open end opposite to the third open end, and an evanescent waveguide interposed between the second open end of the first resonator and the fourth open end of the second resonator. The first half-wave (null/2) resonator, the second half-wave (null/2) resonator, and the evanescent waveguide being single-unit. An air gap does not have to be formed by mounting components on a printed circuit board. Therefore, the overall size of the band pass filter can be miniaturized and fabrication of the band pass filter is simplified.
Abstract:
A semiconductor band pass filter is disclosed. The filter is an integrated circuit device having a semiconductor layer with a ground plane on one face and an insulating layer and an overlying conductive line on the other face. The semiconductor layer includes near the insulating layer a highly doped region which may have substantially the same pattern as the conductive line. The passed band can be selected by varying the doping level of the doped region.
Abstract:
A flip-chip employing an integrated cavity filter is disclosed comprising an integrated circuit (IC) chip comprising a semiconductor die and a plurality of conductive bumps. The plurality of conductive bumps is interconnected to at least one metal layer of the semiconductor die to provide a conductive "fence" that defines an interior resonator cavity for providing an integrated cavity filter in the flip-chip. The interior resonator cavity is configured to receive an input RF signal from an input transmission line through an input signal transmission aperture provided in an internal layer in the semiconductor die. The interior resonator cavity resonates the input RF signal to generate the output RF signal comprising a filtered RF signal of the input RF signal, and couples the output RF signal on an output signal transmission line in the flip-chip through an output transmission aperture provided in the aperture layer.
Abstract:
There is provided a method, comprising: obtaining information indicating at least one reference characteristic; obtaining input data, the input data relating to the output of the tunable filter; determining, based on the input data, at least one characteristic of the tunable filter; upon detecting that the at least one determined characteristic does not match with the at least one reference characteristic, determining tuning instructions for the tunable filter; and applying the tuning instructions in adjusting the tunable filter.
Abstract:
The present invention relates to a waveguide E-plane filter component comprising a first and second main part (2) with a corresponding first and second waveguide section part (3). The main parts (2) are mounted to each other, such that a waveguide arrangement is formed. The waveguide arrangement has a height and a width. The waveguide E-plane filter component further comprises at least one electrically conducting foil (10, 11) that is placed between the main parts (3), said foil comprising a filter part (25) with apertures (12a, 12b, 12c, 12d). Each pair of adjacent apertures is separated by a corresponding foil conductor (13a, 13b, 13c) of which at least one is constituted by a tuning foil conductor (13a) that has a first, second and third part (14, 16, 18) with a corresponding first, second and third width (15, 17, 19).
Abstract:
Various multi-mode resonant filters including a housing having a cavity, are provided. The multi-mode resonant filters include a Dielectric Resonant (DR) element received in the cavity of the housing, and a plurality of transmission lines for connecting a point on one of a first axis, a second axis, and a third axis with a point on another axis. The first axis, the second axis, and the third axis are orthogonal to each other with respect to a center of the DR element.