Abstract:
In a line head, a plurality of light emitters are arrayed on a substrate in a first direction. Each of the light emitters is operable to emit a light beam. In a rod lens array, a plurality of rod lenses are arrayed in the first direction, and each of the rod lenses is adapted to focus the light beam emitted from an associated one of the light emitters onto a target surface. The substrate and the rod lens array are attached to a holder elongated in the first direction. Positioning members are provided at both end portions of the holder in the first direction. A relative position between the substrate and at least one of the positioning members is variable in a second direction perpendicular to the first direction.
Abstract:
A technique is provided which can realize scanning by a light flux having a desired optical characteristic in a light beam scanning device adopting a multi-beam optical system. There are provided a pre-deflection optical system that shapes divergent light beams from plural light sources into a light flux having a cross-sectional shape long in a specified direction, and a rotary deflector that deflects the light flux shaped by the pre-deflection optical system and scans it in the specified direction, and the pre-deflection optical system includes a first optical system that weakens a degree of divergence of the divergent light beams from the plural light sources or converts them into parallel light beams or converging light beams, a second optical system including at least one lens having a negative power in a rotation axis direction of the rotary deflector, and a third optical system having a positive power in the rotation axis direction of the rotary deflector.
Abstract:
In an optical beam scanning apparatus and an image forming apparatus equipped with the optical beam scanning apparatus of the present invention, a holder base is screwed to an optical housing, a holder holds a light source, and a laser drive board is screwed to the holder. Rotary adjustment of the holder about the optical axis of the light source is performed with respect to the holder base, and the holder is fixed to the holder base. According to the optical beam scanning apparatus and the image forming apparatus equipped with the optical beam scanning apparatus of the present invention, it is possible to perform rotary adjustment of the light source about the optical axis with ease even in a small space.
Abstract:
Disclosed are a scanner and an image forming apparatus employing the same. The scanner may produce bidirectional scanning of light by oscillating a deflecting mirror about a first axis substantially parallel to the mirror surface, and may compensate for skewing of the scan lines by rotating the mirror about a second axis that is substantially perpendicular to the first axis so as to allow the light to be scanned at an angle.
Abstract:
A scanning module of an image scanner for scanning a document includes a base, a reflective mirror stand mounted on the base, a shaft rotatably mounted on the reflective mirror stand, a reflective mirror member fixed on the shaft and rotatable with the shaft, and a gear set pivotally coupled to the shaft for rotating and driving the shaft to adjust the reflective angle of the reflective mirror member.
Abstract:
In an image forming apparatus (1) utilizing electrophotographic technology, position and posture of a laser scan unit (5) with respect top a frame (13) is adjusted easily without cost rise and upsizing of the apparatus. Semicircular recesses (53) and an elongate hole (54) are formed at each of three fixing portions (52a, 52b and 52c) in the vicinities of side faces (51b) and a rear face (51c) of a housing (51) of the laser scan unit (5), and an adjuster 30 serving as a spacer is attached to each of the fixing portions (52a, 52b and 52c). Each adjuster (30) is elected among a plurality of kinds of adjustors respectively having different thicknesses manufactured by press working of metal plates commercially produced and having different thicknesses with using the same dies. The adjustor has a pair of semicircular engaging portions 30b and a coupling portion 30a perpendicular to and coupling the engaging portions (30b).
Abstract:
Described herein is a light source apparatus in which wasteful cost increases can be suppressed during the manufacture of various types of light source apparatuses and replacement of a broken light source can be performed at low cost, a recording apparatus using the light source apparatus, and an image forming apparatus comprising the recording apparatus, a plurality of optical units comprising optical members (a light source element and a lens) for outputting a single beam are combined separably in row form, and a holder used as means for holding the optical units in row form.
Abstract:
An image forming apparatus has a scanning unit capable of forming a plurality of lines of an image simultaneously by scanning, in a main scanning direction, laser beam that has been emitted from a plurality of laser emitting devices. The apparatus has a memory for storing an error characteristic, in a sub-scanning direction with respect to an ideal scanning line in the main scanning direction, of a scanning line scanned by the scanning unit. A line on which image data is read out is changed over in accordance with a line changeover position in the main scanning direction based upon the error characteristic and a revised pixel position in the main scanning direction in the image data.
Abstract:
A technique is provided which can realize scanning by a light flux having a desired optical characteristic in a light beam scanning device adopting a multi-beam optical system. There are provided a pre-deflection optical system that shapes divergent light beams from plural light sources into a light flux having a cross-sectional shape long in a specified direction, and a rotary deflector that deflects the light flux shaped by the pre-deflection optical system and scans it in the specified direction, and the pre-deflection optical system includes a first optical system that weakens a degree of divergence of the divergent light beams from the plural light sources or converts them into parallel light beams or converging light beams, a second optical system including at least one lens having a negative power in a rotation axis direction of the rotary deflector, and a third optical system having a positive power in the rotation axis direction of the rotary deflector.
Abstract:
In an image forming apparatus (1) utilizing electrophotographic technology, position and posture of a laser scan unit (5) with respect top a frame (13) is adjusted easily without cost rise and upsizing of the apparatus. Semicircular recesses (53) and an elongate hole (54) are formed at each of three fixing portions (52a, 52b and 52c) in the vicinities of side faces (51b) and a rear face (51c) of a housing (51) of the laser scan unit (5), and an adjuster 30 serving as a spacer is attached to each of the fixing portions (52a, 52b and 52c). Each adjuster (30) is elected among a plurality of kinds of adjustors respectively having different thicknesses manufactured by press working of metal plates commercially produced and having different thicknesses with using the same dies. The adjustor has a pair of semicircular engaging portions 30b and a coupling portion 30a perpendicular to and coupling the engaging portions (30b).