Abstract:
An image reading apparatus includes a CCD sensor which reads an image of an original document and converts the image into an electrical signal, in which an optical axis of light reflected by the original document is adjusted and allowed to project to the CCD sensor, the CCD sensor reads the image of the original document and converts the image into an electrical signal and to output the electrical signal. The image reading apparatus comprises a processing circuit which detects a CCD output value of the CCD sensor which is varied in accordance with a deviation of the optical axis, and an optical axis adjusting mechanism (first mirror and first carriages) which adjusts the optical axis such that an output value detected by the processing circuit becomes an appropriate value. The optical axis adjusting mechanism comprises a mirror which reflects light from the original document in a set direction, a fixing/supporting projection which supports the mirror at a given position, an optical axis adjusting screw which supports the mirror together with the fixing/supporting projection, and which turns the mirror by screwing or loosening the screw, thereby adjusting the optical axis, and an elastic supporting projection 29 which abuts from an opposite surface and elastically supports the mirror in a state in which adjustment by the optical axis adjusting screw is permitted.
Abstract:
A mount for an optical device, such as a linear CCD array, is disclosed. The array is mounted on a base which is supported on a frame for adjustment relative thereto. The base is slidably movable on the frame for adjustment of the array in in-track and cross-track directions. The base is movable toward and away from the frame to provide a focus adjustment of the array. In order to provide a mount which can be easily and precisely adjusted to position the array along five degrees of freedom, adjustment screws are positioned such that the position of the array can be changed along one degree of freedom without changing the position of the array along any of the other degrees of freedom.
Abstract:
An adjusting method for a lens unit used in an image reading apparatus which images image information of an original onto an image reading unit by the lens unit and reads the image information, the lens unit including rotationally-symmetrical lenses, a lens barrel including the rotationally-symmetrical lenses and an adjusting lens, the adjusting method including: performing rotational adjustment of the lens barrel with respect to the adjusting lens; and imaging an adjusted chart onto one-dimensional photoelectric transducers via the lens unit, obtaining contrast depth characteristics of images corresponding to at least three angles of field of the lens unit among images of the adjusted chart, and, according to the obtained contrast depth characteristics, performing position adjustment of the adjusting lens in at least one of an array direction of the one-dimensional photoelectric transducers, a direction orthogonal to the array direction and an optical axis direction of the lens unit.
Abstract:
A scanning module of an image scanner for scanning a document includes a base, a reflective mirror stand mounted on the base, a shaft rotatably mounted on the reflective mirror stand, a reflective mirror member fixed on the shaft and rotatable with the shaft, and a gear set pivotally coupled to the shaft for rotating and driving the shaft to adjust the reflective angle of the reflective mirror member.
Abstract:
An optical reading device of a scanning apparatus includes two light sources and a movable lens. The first light source emits a first light when the optical reading device is operated in a flatbed scanning mode. The second light source emits a second light when the optical reading device is operated in a sheetfed scanning mode. The movable mirror is selected to allow for passing the first light without being obstructed by the movable mirror in the flatbed scanning mode or allow for reflecting the second light coming from the second mirror in the sheetfed scanning mode. Due to the special design, the overall volume of the scanning module is reduced.