Abstract:
An electronic apparatus includes a mainframe with a keyboard embedded therein, a mounting frame pivotally connected with the mainframe, a display screen mounted in the mounting frame, a lighting source disposed on the mounting frame, and an optical element cooperating with the lighting source and slideably mounted on the mounting frame. Light from the lighting source is projected to different predetermined areas by adjusting positions of the optical element relative to the lighting source. In each of the positions of the optical element, the light from the lighting source is modulated by a corresponding portion of the optical element to be projected to a corresponding predetermined area.
Abstract:
An epitaxial Ni silicide film that is substantially non-agglomerated at high temperatures, and a method for forming the epitaxial Ni silicide film, is provided. The Ni silicide film of the present disclosure is especially useful in the formation of ETSOI (extremely thin silicon-on-insulator) Schottky junction source/drain FETs. The resulting epitaxial Ni silicide film exhibits improved thermal stability and does not agglomerate at high temperatures.
Abstract:
A Schottky field effect transistor is provided that includes a substrate having a layer of semiconductor material atop a dielectric layer, wherein the layer of semiconductor material has a thickness of less than 10.0 nm. A gate structure is present on the layer of semiconductor material. Raised source and drain regions comprised of a metal semiconductor alloy are present on the layer of semiconductor material on opposing sides of the gate structure. The raised source and drain regions are Schottky source and drain regions. In one embodiment, a first portion of the Schottky source and drain regions that is adjacent to a channel region of the Schottky field effect transistor contacts the dielectric layer, and a non-reacted semiconductor material is present between a second portion of the Schottky source and drain regions and the dielectric layer.
Abstract:
A shredder includes a shredder housing with a top head and a shredder mechanism receptacle. The top head has at least a first slot for receiving articles to be shredded. The shredder mechanism receptacle is connected to the top head for receiving a cutting assembly capable of shredding paper. A safety device is disposed in the shredder housing. The safety device includes a slot guard and gear system for selectively blocking the first slot.
Abstract:
Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.