Abstract:
A polynucleotide encoding a secreted form of wild type Renilla luciferase. Also provided is a polynucleotide encoding a secreted modified form of wild type Renilla luciferase. Additionally, the polypeptides encoded by the polynucleotides of the present invention and uses of the polynucleotides and polypeptides of the present invention in biological assays. Also, a stable mammalian packaging cell line which produces retroviruses carrying a polynucleotide encoding a secreted Renilla luciferase.
Abstract:
Methods for preparing cell lines that contain artificial chromosomes, methods for preparation of artificial chromosomes, methods for purification of artificial chromosomes, methods for targeted insertion of heterologous DNA into artificial chromosomes, and methods for delivery of the chromosomes to selected cells and tissues are provided. Also provided are cell lines for use in the methods, and cell lines and chromosomes produced by the methods. In particular, satellite artificial chromosomes that, except for inserted heterologous DNA, are substantially composed of heterochromatin, are provided. Methods for use of the artificial chromosomes, including for gene therapy, production of gene products and production of transgenic plants and animals are also provided.
Abstract:
A raster scan control system (18) for use with a charged-particle beam delivery system (20) provides precise control of large currents driving an inductive load. The beam delivery system includes a nozzle through which a charged-particle beam (24), such as a proton beam, passes prior to being directed to a target (32). The nozzle includes both fast and slow sweep scan electromagnets (204, 208) that cooperate to generate a sweeping magnetic field that steers the beam along a desired raster scan pattern at the target. The electromagnets are driven by large currents (213, 215) from the raster scan control system. The raster scan control system includes both fast and slow power amplifiers (212, 214) for delivering the desired large currents to the fast and slow electromagnets, respectively; monitoring means (206, 210) for monitoring the magnetic fields; sensing means (212, 230) for sensing the large currents; feedback means for maintaining the magnetic fields and large current at desired levels; out of tolerance means for automatically causing the servo power amplifiers to steer the beam away from the target area in the event the error signal becomes excessive; a programmable raster generator (80) for providing the fast and slow power amplifiers with a raster scan signal (216, 218) that defines the desired raster pattern; and a power supply (74) for delivering the requisite power to the power amplifiers and other components.
Abstract:
Accurate and repeatable patient alignment with a charged-particle beam of a radiation beam therapy system, such as a proton beam delivery system, is provided. The patient (26) is immobilized within a formfit patient pod (24). Reference radiographs are prepared with an X-ray system (40) that are used for repositioning the patient within the pod on subsequent occasions. CT scan data is obtained using a CT Scan System (44) of a particular tissue volume of interest (30), such as a region of the patient wherein a cancerous tumor is located, while the patient (26) remains in the pod (24). The CT scan data is used to prepare a treatment plan for the patient. The treatment plan includes identifying an isocenter within the tissue volume at which the beam is to be directed from a selected angle(s). A computer simulation of the treatment plan is performed to optimize the treatment plan.
Abstract:
A purified naturally occurring natriuretic compound, identified as Natriuretic Hormone, and a method for isolation of the compound. The natriuretic compound has a molecular weight of about 360, a molecular formula of C21H28O5 and with a steroidal nucleus. The compound is useful as a diuretic in the treatment of diseases such as heart disease and hypertension.
Abstract:
Mammalian host cells for use in a cell-mediated transfection process, which contain an RNAi molecule and an expression vector for a pro-apoptotic protein. The method includes inducing apoptotic cell (AC) death in mammalian cells that contain an RNAi molecule capable of down-regulating a chosen target gene. Living cells expressing the target gene are then exposed to the ACs. The ACs are processed by the living cells, and the RNAi molecule in the ACs down-regulates the expression of the target gene in living cells.