Abstract:
A cascode common source and common gate LNAs operating at 60 GHz are introduced and described. The cascode common source LNA is simulated to arrive at an optimum ratio of upper device width to the lower device width. The voltage output of the cascode common source LNA is translated into a current to feed and apply energy to the mixer stage. These input current signals apply the energy associated with the current directly into the switched capacitors in the mixer to minimize the overall power dissipation of the system. The LNA is capacitively coupled to the mixer switches in the I and Q mixers and are enabled and disabled by the clocks generated by the quadrature oscillator. These signals are then amplified by a differential amplifier to generate the sum and difference frequency spectra.
Abstract:
A large gain is used to start up the oscillation of the crystal quickly. Once the oscillation starts, the amplitude is detected. A control circuit determines based on the measured amplitude to disable a low resistance path in the controlled switch array to reduce the applied gain below the power dissipation specification of the crystal. Another technique introduces a mixed-signal controlled power supply multi-path resistive array which tailors the maximum current to the crystal. A successive approximation register converts the amplitude into several partitions and enables/disables one of several power routing paths to the inverter of the oscillator. This allows a better match between the crystal selected by the customer and the on-chip drive circuitry to power up the oscillator without stressing the crystal. The “l/f” noise of the oscillator circuit is minimized by operating transistors in the triode region instead of the linear region.
Abstract:
A differential amplifier comprising a first upper device and a first lower device series coupled between two power supplies and a second upper device and a second lower device series coupled between the two power supplies. A first DC voltage enables the first upper device and the second upper device and a second DC voltage regulates current flow in the first lower device and the second lower device. An AC signal component is coupled to the first upper device and the second lower device while the AC signal complement is coupled to the first lower device and the second upper device. Separate RC networks couple the AC signals to their respective device. A first and second output signal forms between the upper device and the lower device, respectively. All the devices are same channel type.
Abstract:
A differential amplifier comprising a first upper device and a first lower device series coupled between two power supplies and a second upper device and a second lower device series coupled between the two power supplies. A first DC voltage enables the first upper device and the second upper device and a second DC voltage regulates current flow in the first lower device and the second lower device. An AC signal component is coupled to the first upper device and the second lower device while the AC signal complement is coupled to the first lower device and the second upper device. Separate RC networks couple the AC signals to their respective device. A first and second output signal forms between the upper device and the lower device, respectively. All the devices are same channel type.
Abstract:
The differential output of a Programmable Gain Amplifier (PGA) is loaded by the input differential gate capacitance of a plurality of Analog to Digital convertors (ADC) comparators and the differential metal layer traces to interconnect these comparators to the PGA. The differential capacitive load presented to the PGA is quite large and reduces the bandwidth of this interconnect between the PGA and ADC. To overcome the performance degradation due to the differential capacitive load, an active negative-capacitor circuit cancels the effect of the large input capacitance of the ADC comparators. This cancelation extends the gain characteristics of the interconnect between the PGA's output and the inputs of the first stage of the comparators. The active negative-capacitance is comprised of a cross pair NMOS with a capacitor connecting their sources where each NMOS is biased by a current source.
Abstract:
A medical sensor system comprises a gateway comprising a wideband receiver and a narrow band transmitter, the each gateway configured to receive a wideband positioning frame using the wideband receiver from one or more wearable sensors and to transmit acknowledgement frames using the narrow band transmitter that include timing and control data for use by the sensors to establish timing for transmission of the positioning frame; and at least one wearable sensor comprising a wideband transmitter and a narrow band receiver, the sensor configured to transmit a sensor data frame to the gateway using the wideband transmitter and to receive an acknowledgement frame from the gateway using the narrow band receiver, extract timing and control information from the frame, and adjust the timing and synchronization of the wideband transmitter using the timing and control information.