Abstract:
A fluid ejection device may include a fluid ejection die embedded in a moldable material, and a number of heat exchangers thermally coupled to an ejection side of the fluid ejection die. Further, the fluid ejection device may include a number of cooling channels defined in the moldable material thermally coupled to the heat exchangers.
Abstract:
A device includes: a die including a microfluidic device; a polymer substrate formed around the die; and a separate fluid manifold attached to the polymer substrate over the die and on a same side of the substrate as the die, the manifold to deliver fluid to the die.
Abstract:
A printhead may include a nozzle, a firing chamber fluidly coupled to the nozzle, a printing fluid slot fluidly coupled to the firing chamber, and a sensor to detect a plurality of complex impedance values of a printing fluid at the printhead over a plurality of frequencies and create a printing fluid signature of the printing fluid. A method of determining at least one characteristic of a printing fluid provided to a printhead ma include, with a number of sensors, applying an alternating current at a plurality of frequencies over time to the printing fluid to receive a plurality of complex impedance values and comparing the plurality of complex impedance signals to a number of stored signals.
Abstract:
A method of preparing a sample may include depositing an aqueous solution comprising copies of a primer into a layer of hydrophobic liquid on a substrate with a thermal inkjet device. A sample may include: a substrate; a layer of hydrophobic liquid on the substrate, the layer of hydrophobic liquid comprising a plurality of droplets of aqueous solution distributed in the layer, wherein the plurality of droplets contain: primers; a polymerase enzyme; deoxynucleotide triphosphates (dNTPs); and a target sequence for replication; and a cover, the cover contacting and covering the layer of hydrophobic liquid.
Abstract:
In one example in accordance with the present disclosure a liquid level sensor is described. The sensor includes a carrier and a liquid level sensing interface disposed on the carrier. The liquid level sensing interface includes a number of liquid level sensing devices disposed on an elongated strip. The number of liquid level sensing devices detect a liquid level in a liquid container. The liquid level sensing interface also includes a number of thermal isolation components formed on the elongated strip to thermally isolate adjacent liquid level sensing devices.
Abstract:
An apparatus may include a frame layer having a recess, a substrate secured to the frame layer at least partially across the recess and a surface enhanced luminescence (SEL) stage supported by the substrate within the recess.
Abstract:
A method of detecting a level of printable fluid in a container includes, with at least one sensing location on a die in thermal contact with the printable fluid in the container, sensing a voltage of a capacitor over time as current from the capacitor leaks through a field effect transistor (FET). The FET and capacitor are associated with the sensing location. The method may further include, based on the voltage of the capacitor over time and a threshold voltage, determining whether the printable fluid is present at the at least one sensing location.
Abstract:
An example printing cartridge includes a fluid container, a plurality of sensing locations in thermal contact with the fluid container, a voltage comparator to output time-based information based on a comparison of a sensed voltage generated at a selected sensing location of the plurality of sensing locations to a threshold voltage, the time-based information representative of whether a fluid is present at a fluid level associated with the selected sensing location, and a counter to convert the time-based information to a digital code based on a number of clock cycles.
Abstract:
In one example in accordance with the present disclosure a fluid property sensing device is described. The fluid property sensing device includes a substrate having a trench formed therein. The trench includes a bottom surface and opposite side surfaces. A first electrode is disposed on a first side surface of the trench and a second electrode is disposed on a second side surface of the trench. The first electrode and second electrode form a capacitor to measure a complex impedance of a fluid that fills a space between the first electrode and the second electrode. This complex impedance indicates a property of the fluid. A fluid level sensing die, having a number of fluid level sensing components disposed thereon, may be attached to the substrate, preferably in such a way that the fluid level sensing die is surrounded by the trench. In this way the surface area of the electrodes provided in the trench can be increased. The number of level sensing components may be thermal sensing components.
Abstract:
A method of forming a fluid level sensor includes coupling an array of heating elements and sensors to a first side of a substrate. A second side of the substrate is coupled to a carrier. The method also includes coupling an electrical interface to the carrier and electrically coupling the array to the electrical interface via a conductive wire. The method further includes overmolding the electrical interface, the first side of the substrate, and the conductive wire to form an overmolded fluid level sensor. The carrier may be coupled to the second side of the substrate and the electrical interface via a releasable adhesive and may be removed after overmolding the fluid level sensor.