Abstract:
The present invention relates to a composition comprising a lignin polyol, a method for the manufacturing of said composition and use thereof in different application areas, such as in adhesives, binders, castings, foams (such as in rigid polyurethane and polyisocyanurate foams for thermal insulation and construction applications, semi-rigid, flexible, moulded, laminated, microcellular and viscoelastic polyurethane foams), fillers, glues, sealants, elastomers and rubbers. The present invention also relates to a method for the manufacturing of a foam and use of this foam.
Abstract:
A resin composition is provided which is excellent in impact resistance, heat resistance, moldability, and chemical resistance and which is suitable, for example, as a molding material for a portable terminal housing. An aromatic polycarbonate composite resin composition contains, with respect to 100 parts by mass of a resin component formed of 60 to 90 parts by mass of an aromatic polycarbonate resin (A) and 10 to 40 parts by mass of a polyester resin (B), 3 to 20 parts by mass of a graft copolymer (C) formed by graft polymerization of a (meth)acrylic acid ester compound with a diene-based rubber and 0.005 to 0.1 parts by mass of a stabilizer (D). The graft copolymer (C) has a sulfur content of 100 to 1,500 ppm and an average particle diameter of 70 to 240 nm, and the stabilizer (D) is an organic phosphate compound represented by the following general formula (I). O═P(OH)m(OR)3-m (I) R represents an alkyl group or an aryl group. m represents 0 to 2.
Abstract translation:提供了耐冲击性,耐热性,成型性和耐化学性优异的树脂组合物,其适用于例如便携式终端壳体的成型材料。 芳族聚碳酸酯复合树脂组合物相对于100质量份由60〜90质量份芳族聚碳酸酯树脂(A)和10〜40质量份聚酯树脂(B)形成的树脂成分, 通过(甲基)丙烯酸酯化合物与二烯系橡胶的接枝聚合而形成的接枝共聚物(C)为3〜20质量份,稳定剂(D)为0.005〜0.1质量份。 接枝共聚物(C)的硫含量为100〜1500ppm,平均粒径为70〜240nm,稳定剂(D)为下述通式(I)表示的有机磷酸酯化合物。 O = P(OH)m(OR)3-m(I)R表示烷基或芳基。 m表示0〜2。
Abstract:
Provided is an electric component equipped with a live electrical part and an insulating resin molded article that is molded from a thermoplastic resin composition and is in contact with the live electrical part, wherein: the thermoplastic resin composition includes (A) 60 to 80 parts by mass of a polyphenylene ether resin or a mixture of a polyphenylene ether resin and a styrene resin, (B) 60 to 80 parts by mass of a hydrogenated block copolymer, (C) 5 to 30 parts by mass of a flame retardant, and (D) 0.1 to 3 parts by mass of titanium oxide (in an amount corresponding to 100 parts by mass of the total of (A) to (C)).
Abstract:
Disclosed are a halogen-based flame retardant glass fiber reinforced polyamide resin composition and a method of preparing the same. A halogen-based flame retardant glass fiber reinforced polyamide resin composition comprising styrene-maleimide based copolymer having a high thermal decomposition temperature to secure flame retardancy and appearance required in electric and electronic components and a method of preparing the same are provided.
Abstract:
The present invention provides a flame retardant composition including a thermoplastic resin, a cellulose, a rubber having a siloxane bond, and a flame retardant agent.
Abstract:
A polymer powder (P) selected from a group consisting of (i) a polymer powder (P1) and (ii) a polymer powder (P2) is provided. The (i) polymer powder (P1) includes a (meth)acrylate-based polymer (A1) having a glass transition temperature of 0° C. or less, and the polymer powder has an acetone-soluble component of 5 mass % or more. The acetone-soluble component has a mass average molecular weight of 100,000 or more. The (ii) polymer powder (P2) has an acetone-soluble component of 2 mass % to 35 mass %, the acetone-soluble component has a mass average molecular weight of 100,000 or more, and has a volume average primary particle size (Dv) of 200 nm or more.
Abstract:
A flame-retardant thermoplastic elastomer composition is provided to produce a molded article possessing mechanical properties, flame retardancy and softness inherently possessed by a molted article obtained from a thermoplastic elastomer composition containing a mineral oil-based softening agent and a flame retardant and fails to stain a mold after injection molding. A production method includes step (1) obtaining a thermoplastic elastomer composition by dynamically crosslinking a polymer mixture (A) containing an ethylene-α-olefin-based copolymer rubber (A1) and a propylene-based polymer (A2) in the presence of a mineral oil-based softening agent (C) and a crosslinking agent (D), and step (2) kneading the thermoplastic elastomer composition, a halogen-free flame retardant (E), zinc oxide (F), and a thermoplastic resin with a polar group (G). The amounts of the components satisfy condition (p) when starting the dynamic crosslinking in step (1) and satisfy condition (q) when starting the kneading in step (2), respectively.
Abstract:
A flame retardant filler includes a bridged polysilsesquioxane prepared by sol-gel polymerization. In an exemplary synthetic method, a bridged polysilsesquioxane-based flame retardant filler is prepared by sol-gel polymerization of a monomer having two or more trialkoxysilyl groups attached to an organic bridging group that contains a fire retardant group (e.g., a halogen atom, a phosphinate, a phosphonate, a phosphate ester, and combinations thereof). Bridged polysilsesquioxane particles formed by sol-gel polymerization of (((2,5-dibromo-1,4-phenylene)bis(oxy))bis(ethane-2,1-diyl))bis(trimethoxysilane), for example, and follow-on sol-gel processing may serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant.
Abstract:
The present invention includes a flame-retardant thermoplastic polyester resin composition which provides a molded article having excellent tracking resistance and excellent mechanical characteristics, while maintaining high flame retardancy; and a molded article which is obtained by molding the flame-retardant thermoplastic polyester resin composition. A flame-retardant thermoplastic polyester resin composition of an embodiment of the present invention contains 1-70 parts by weight of two or more (C) phosphorus-containing flame retardants that are selected from the group consisting of (C-1) condensed phosphoric acid esters, (C-2) phosphazene compounds and (C-3) organic metal phosphinates and 1-90 parts by weight of (D) a nitrogen-containing flame retardant per 100 parts by weight of the total of 50-95 parts by weight of (A) a thermoplastic polyester resin and 5-50 parts by weight of (B) a methacrylic resin.
Abstract:
There is provided herein a flame-retarded polyolefin polymer composition with reduced antimony trioxide content comprising: (a) at least one polyolefin polymer; (b) at least one brominated flame retardant; (c) at least one antimony trioxide synergist and, (d) at least one calcium borate on an inorganic carrier. There is also provided a method of making said flame retarded polyolefin polymer composition and article thereof.