Abstract:
Method for manufacturing a metal cord with three concentric layers including a first layer of diameter dc made up of M wire(s) of diameter d1, around which layer are wound together as a helix at a pitch p2, as a second layer, N wires of diameter d2, around which are wound as a helix at pitch p3, as a third layer, P wires of diameter d3. The N wires of the second layer are assembled around the layer to form, at a point called “assembling point”, an intermediate cord called “core strand” of M+N construction; upstream and/or downstream of the assembling point, the layer and/or the core strand is sheathed with a rubber or rubber composition by passing through at least one extrusion head; then the P wires of the third layer are assembled around the core strand to form a cord of M+N+P construction thus rubberized from the inside.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
J strands form a core. K outer strands are wound around it in a helix with pitch PK, each having a cord with an L wire inner layer of diameter d1, and an M wire outer layer of diameter d2, wound around the inner layer in a helix with pitch p2; with (in mm): 0.10
Abstract:
Method for manufacturing a metal cord with three concentric layers including a first layer of diameter dc made up of M wire(s) of diameter d1, around which layer are wound together as a helix at a pitch p2, as a second layer, N wires of diameter d2, around which are wound as a helix at pitch p3, as a third layer, P wires of diameter d3. The N wires of the second layer are assembled around the layer to form, at a point called “assembling point”, an intermediate cord called “core strand” of M+N construction; upstream and/or downstream of the assembling point, the layer and/or the core strand is sheathed with a rubber or rubber composition by passing through at least one extrusion head; then the P wires of the third layer are assembled around the core strand to form a cord of M+N+P construction thus rubberized from the inside.
Abstract:
Metal cord with three concentric layers including a first layer of diameter dc made up of M wire(s) of diameter d1, around which are wound as a helix at a pitch p2, as a second layer, N wires of diameter d2, around which are wound as a helix at pitch p3, as a third layer, P wires of diameter d3. Some gaps or capillaries in the cord situated between the core and the second layer and between the core wires themselves when M is greater than 1 and between the N wires of the second layer and the P wires of the third layer, contain a filling rubber based on an unsaturated thermoplastic elastomer
Abstract:
The invention pertains to the production of cables and can be used for reinforcing single-block constructions and other articles made of concrete. The purpose of the invention is to create a self-rectifying reinforcing member. The reinforcement cable comprises a central wire and layer-forming wires spirally wound around the same and having a periodical profile. A periodical profile is applied on the outer section of the surface of the layer-forming wires and is made in the form of inclined protrusions above the generatrix of the crimped surface of the cable. The sections of the surface of the layer-forming wires in contact with other wires are made in the form of spirally-arranged planar flats. The cable is secured at the base of the structure and is attached upon each casting cycle between the previously-formed portion of the structure and a distribution matrix. The cable is supplied via bypass rollers and a guiding trough from reels arranged at the base. Before each casting cycle, the matrix is moved by a distance corresponding to a section to be formed. Each reinforcing member is integral along the entire length of the structure. The connection of perpendicular members is made using inserts or a tie wire.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
A metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d, wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), said cord being characterized in that it has the following characteristics (d1, d2, p1 and p2 being in mm): 0.08
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract translation:本发明涉及可用作轮胎胎体加强件的增强元件的结构L + M + N的三层金属电缆,包括:具有直径d1的L线的内层C1,L为1至4,被 直径为d2的M线的中间层C2以螺距p2以螺距p2缠绕在一起,间距p2为M为3至12,所述层C2被缠绕在一起的直径为d3的N线的外层C3围绕,螺旋线为 间距p3,其N为8至20,所述电缆的特征在于由基于至少一种二烯弹性体的可交联或交联的橡胶组合物形成的护套至少覆盖所述层C2。 本发明还涉及由这种多层电缆增强的塑料材料和/或橡胶制成的制品或半成品,特别是工业车辆中使用的轮胎,特别是重型车辆轮胎及其胎体增强件 层