Abstract:
Bekannte Schutzschichten mit hohem Cr-Gehalt und zusätzlich Silizium bilden Sprödphasen aus, die unter dem Einfluss von Kohlenstoff während des Einsatzes zusätzlich verspröden. Die erfindungsgemäße Schutzschicht hat die Zusammensetzung 24% bis 26% Kobalt (Co), 10% bis 12% Aluminium (Al), 0,2% bis 0,5% Yttrium (Y), 12% - 14% Chrom (Cr), Rest Nickel.
Abstract:
Bekannte Schutzschichten mit hohem Cr-Gehalt und zusätzlich ein Silizium bilden Sprödphasen aus, die unter dem Einfluss von Kohlenstoff während des Einsatzes zusätzlich verspröden. Die erfindungsgemäße Schutzschicht hat die Zusammensetzung 24% bis 26% Kobalt (Co), 10,5% bis 11,5% Aluminium (AI), 0,1% bis 0,7% Yttrium (Y) und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden, 12% bis 15% Chrom (Cr), optional 0,1% bis 3% Tantal, optional 0,05% bis 0,6% Silizium, Rest Nickel.
Abstract:
Known protective layers having a high Cr content, as well as silicon, have brittle phases that become additionally brittle under the influence of carbon during use. The protective layer according to the invention has the composition of 31% to 35% cobalt (Co), 10% to 13% aluminum (Al), 0.1% to 0.7% yttrium (Y), and/or at least one equivalent metal from the group comprising scandium and the rare earth elements, 31% to 35% chromium (Cr), 0.1% to 0.5% silicon, and the remainder nickel.
Abstract:
Die vorliegende Erfindung betrifft eine Schutzschicht (100) für ein Bauteil (102), das ein erstes Material mit einem ersten Ruhepotential (211) aufweist. Die Schutzschicht (100) weist ein zweites Material auf, das ausgebildet ist, um eine Schutzwirkung der Schutzschicht zu bewirken und weist ein zweites Ruhepotential auf. Die Schutzschicht (100) weist ferner ein drittes Material mit einem dritten Ruhepotential auf, wobei das dritte Material ausgebildet ist, um eine Potentialdifferenz zwischen dem ersten Ruhepotential und einem vierten Ruhepotential der Schutzschicht zu verringern, wobei das vierte Ruhepotential von dem zweiten und dem dritten Ruhepotential abhängig ist.
Abstract:
Eine Turbinenschaufel (16) mit einer an das Schaufelblatt (18) angeformten Deckplatte (20) soll bei einem hohen Wirkungsgrad für einen besonders zuverlässigen und sicheren Betrieb in einer Turbine, insbesondere einer Dampfturbine (2) ausgelegt sein. Dazu ist erfindungsgemäß auf die vom Schaufelblatt (18) abgewandte Oberfläche der Deckplatte (20) eine Schutzschicht aus einem Alternativmaterial aufgebracht, wodurch das Reibverhalten gegenüber einer der Schutzschicht (28) gegenüberliegenden Turbinenkomponente, insbesondere einem Dichtband (30), gezielt beeinflussbar ist und somit im Falle des Anstreifens besonders günstige Notlaufeigenschaften bereitgestellt werden können.
Abstract:
The invention concerns a component (11) such as a hydraulic component, made of composite material with organic matrix and reinforcing fibres (22-24), coated at least locally with a protective or metal reinforcement or metal-based layer. It comprises metal or metal-based fibres (21), said layer being formed by electrolytic deposition on said metal or metal-based fibres.
Abstract:
A cobalt-nickel alloy composition comprising by weight: about 29 to 37 percent cobalt; about 29 to 37 percent nickel; about 10 to 16 percent chromium; about 4 to 6 percent aluminium; at least one of Nb, Ti and Ta; at least one of W, Ta and Nb; the cobalt and nickel being present in a ratio between about 0.9 and 1.1.
Abstract:
A known protective layer has a high Cr content and additionally containing a silicon, forms brittle phases, which become additionally embrittled under the influence of carbon during use. A proposed protective layer has the following composition: 24% to 26% cobalt, 10.5% to 11.5% aluminum, 0.1% to 0.7% yttrium and/or at least one equivalent metal from the group of scandium and the rare earth elements, 12% to 15% chromium, optionally 0.1% to 3% tantalum, optionally 0.05% to 0.5% silicon, with the remainder being nickel.
Abstract:
Gas turbine engine compressor disks having a hot flowpath side; a shaft having a first surface positioned in the hot flowpath side; and a thermal barrier applied to at least the first surface of the shaft where the thermal barrier is operable to maintain the temperature of the shaft below about 700° C. (1300° F.) when the hot flowpath side experiences a service operating temperature of from about 700° C. (1300° F.) to about 788° C. (1450° F.).