Abstract:
A fluorescence imaging system for imaging an object, the system includes a white light provider that emits white light, an excitation light provider that emits excitation light in a plurality of excitation wavebands for causing the object to emit fluorescent light, a component that directs the white light and excitation light to the object and collects reflected white light and emitted fluorescent light from the object, a filter that blocks light in the excitation wavebands and transmits at least a portion of the reflected white light and fluorescent light, and an image sensor assembly that receives the transmitted reflected white light and the fluorescent light.
Abstract:
A user device including a camera, a spectrometer module, and a processing unit is disclosed. In one aspect, the camera is adapted to acquire at least one image of a scenery which falls within a field of view of the camera. The spectrometer module is adapted to acquire spectral information from a region within the scenery which region falls within a field of view of the spectrometer module. The processing unit is adapted to determine, based on information relating the field of view of the spectrometer module to the field of view of the camera, a spectrometer module target area, within the at least one image, corresponding to the region. The processing unit is adapted to output display data to a screen of the user device for providing an indication of the target area on the display.
Abstract:
Snapshot spectral imagers comprise an imaging lens, a dispersed image sensor and a restricted isometry property (RIP) diffuser inserted in the optical path between the source image and the image sensor. The imagers are used to obtain a plurality of spectral images of the source object in different spectral bands in a single shot. In some embodiments, the RIP diffuser is one dimensional. An optional disperser may be added in the optical path, to provide further dispersion at the image sensor. In some embodiments, all imager components except the RIP diffuser may be part of a digital camera, with the RIP diffuser added externally. In some embodiments, the RIP diffuser may be included internally in a digital camera.
Abstract:
A microscope system includes: a microscope that generates an observation image of a specimen; an image obtaining unit that obtains an RGB image of the specimen; a spectroscopic information obtaining unit that obtains spectroscopic information of the specimen; an analyzer that analyzes the RGB image; a determining unit that determines a necessity of obtaining the spectroscopic information based on a result of the analysis of the analyzer; and a control unit that controls an operation of the spectroscopic information obtaining unit based on a result of the determination of the determining unit.
Abstract:
Provided are an apparatus and method for recognizing an object on the basis of property information on an object obtained using a multi-wavelength spectrometer. An apparatus for recognizing an object using a multi-wavelength spectrometer includes an image processing unit configured to extract an region of interest from an input three-dimensional image and output shape information on the region of interest, a light irradiation unit configured to irradiate light of a plurality of wavelengths to an arbitrary position of an object corresponding to the detected region of interest, a light receiving unit configured to measure a spectrophotometric value for each light of the plurality of wavelengths, and a light processing unit configured to generate a differential spectrophotometric map using a differential value between spectrophotometric values of different wavelengths measured at the same light irradiation position, and recognize the object using the differential spectrophotometric map and the shape information.
Abstract:
There is described a device (1) for offline inspection and color measurement of printed sheets for the production of banknotes and like printed securities, comprising (i) a console (10) having a supporting surface (10a) for supporting a sample printed sheet (S), (ii) a multipurpose measuring apparatus (20), which multipurpose measuring apparatus (20) comprises multiple sensors (22, 23) including at least one camera (22) for taking images of selected portions of the sample printed sheet (S) and a color measurement sensor (23) for performing spectrophotometric, colorimetric, and/or densitometric measurements at selected locations on (22, 23) the sample printed sheet (S), (iii) a display (30) for displaying the images taken by the camera (22) and the measurements performed by the color measurement sensor (23), and (iv) a control and processing unit (40) coupled to the multipurpose measuring apparatus (20) and the display (30). The device (1) comprises a move-sensor beam (200) housing the multipurpose measuring apparatus (20), which moveable sensor beam (200) is displaceable along an x-axis over the supporting surface (10a) of the console (10) and over the entire surface of the sample printed sheet (S) located on the supporting surface (10a), the multiple sensors (22, 23) being mounted on a common sensor head (21) which is displaceable within the moveable sensor beam (200) along a y-axis so that the multipurpose measuring apparatus (20) can selectively take images of selected portions of the sample printed sheet (S) by means of the camera (22) or perform measurements at selected locations on the sample printed sheet (S) by means of the color measurement sensor (23). The control and processing unit (40) is configured to control displacement of the moveable sensor beam (200) along the x-axis and of the sensor head (21) along the y-axis.
Abstract:
An optical measurement device provided with: a first adjustment optical device for collecting radiation light received by a probe that emits measurement light to a measurement target and receives radiation light radiated from the measurement target, and for emitting the radiation light toward the spectroscope for dividing the radiation light; a detection section for detecting a light intensity distribution of the radiation light; a movement part for moving the first adjustment optical device in a light axis direction of the radiation light and on a plane perpendicular to the light axis direction of the radiation light; and a control section for controlling the movement part. The first adjustment optical device is moved in the light axis direction of the radiation light and on the plane on a basis of a detection result of the detection section such that a reception amount of the radiation light increases.
Abstract:
The present invention relates to a method and optical device for Raman spectroscopy and for observing a sample, said device including an optical means for superimposing an excitation laser beam having a spectral band B0 and an observation beam having a spectral band BV so as to form a combined excitation and observation incident beam, and an optical separation means arranged in the path of a collected beam coming from scattering on the sample and including a first filtering means, a second filtering means capable of spatially separating said collected beam into a first secondary beam and two tertiary beams, each of which includes a spectral band selected from the spectral band B0 of the laser, the spectral band BV of the observation beam, and the spectral band BR of the Raman scattering beam, respectively.
Abstract:
Provided are an apparatus and method for recognizing an object on the basis of property information on an object obtained using a multi-wavelength spectrometer. An apparatus for recognizing an object using a multi-wavelength spectrometer includes an image processing unit configured to extract an region of interest from an input three-dimensional image and output shape information on the region of interest, a light irradiation unit configured to irradiate light of a plurality of wavelengths to an arbitrary position of an object corresponding to the detected region of interest, a light receiving unit configured to measure a spectrophotometric value for each light of the plurality of wavelengths, and a light processing unit configured to generate a differential spectrophotometric map using a differential value between spectrophotometric values of different wavelengths measured at the same light irradiation position, and recognize the object using the differential spectrophotometric map and the shape information.
Abstract:
A compact field spectrograph is described that provides a resolution of 500 or more with no entrance aperture, providing for substantial gain in light throughput, ideal for viewing multiple distant objects with or without telescopic aid, and providing the ability to observe and distinguish a multiplex of objects simultaneously, even if in motion, with minimal or no mechanical tracking required. Spectra may be viewed directly with the unaided eye, or photographed with common consumer cameras.