Abstract:
The present invention provides a mirror display which prevents the boundary line between a frame region and a display region from being observed in a mirror mode and which thus has improved design quality. The mirror display of the present invention includes a half mirror plate including a half mirror layer, and a display device disposed behind the half mirror plate, the display device including a display panel and a frame component that supports a peripheral portion of the display panel, and the mirror display including a reflectance adjuster that makes equal the reflectance in a display region where the half mirror layer and the display panel face each other and the reflectance in a frame region where the half mirror layer and the frame component face each other.
Abstract:
Disclosed herein are methods, structures, apparatus and devices for the termination of unused waveguide ports in planar photonic integrated circuits with doped waveguides such that free-carrier absorption therein may advantageously absorb any undesired optical power resulting in a significant reduction of stray light and resulting reflections.
Abstract:
An optical control element capable of efficiently removing unnecessary higher mode light without complicating a manufacturing process of the optical control element is provided. The optical control element includes a substrate having an electro-optical effect, optical waveguides that are formed on the substrate, and a control electrode that controls light waves propagating through the optical waveguides, and the optical waveguides include an output waveguide portion which derives fundamental mode light, and a subsidiary waveguide portion which is connected to the output waveguide portion and derives higher mode light, and removal means is formed in contact with the subsidiary waveguide portion, for removing the higher mode light propagating through the subsidiary waveguide portion.
Abstract:
A display device includes a display panel, a protective member, a light guide member, a light source, and a light leakage preventing member. The display device includes a display surface concavely curved in a first direction. The light leakage preventing member is coupled to the protective member to be movable according to expansion or contraction of the light guide member. The light leakage preventing member contracts and expands according to the expansion or contraction of the light guide member, and includes an elastic part to prevent the light source from being damaged by the expansion of the light guide member.
Abstract:
An optical control element capable of efficiently removing unnecessary higher mode light without complicating a manufacturing process of the optical control element is provided. The optical control element includes a substrate having an electro-optical effect, optical waveguides that are formed on the substrate, and a control electrode that controls light waves propagating through the optical waveguides, and the optical waveguides include an output waveguide portion which derives fundamental mode light, and a subsidiary waveguide portion which is connected to the output waveguide portion and derives higher mode light, and removal means is formed in contact with the subsidiary waveguide portion, for removing the higher mode light propagating through the subsidiary waveguide portion.
Abstract:
A display panel is provided with a panel body, and a protective film which is adhered to a front surface of the panel body by an adhesive, and a rear surface of the protective film adhered to the panel body includes a convex portion and a concave portion which are formed alternately.
Abstract:
Light emitted by a backlight can be prevented from leaking through a chamfered portion of a front window of a liquid crystal display device.An upper polarizing plate is bonded over the counter substrate, and a front window is bonded over the upper polarizing plate with a UV-curable resin adhesive. The front window is chamfered and a light shielding member is formed on the chamfered portion. The UV adhesive exists between the chamfered portion and the surface of the upper polarizing plate or the counter substrate, and an outer end of the polarizing plate exists at a point outer than an outer end of the front window. Since the light shielding member for the chamfered portion is formed, light from the backlight does not penetrate from the chamfered portion. Thus, light leakage at a periphery of a screen can be prevented even when the view angle is large.
Abstract:
A display system includes: a screen in which, in an area on which invisible light is incident, a scattering state where visible light is scattered and a transmission state where visible light is transmitted are switched; an image projection system to project an image of the visible light onto the screen; and an invisible light projection system to project the invisible light onto the screen and to cause an area of the screen onto which a desired portion of the image is projected to have the scattering state.
Abstract:
A single light guide plate illuminates both first and second liquid crystal display panels opposed to each other, the second liquid crystal display panel having a larger display area than that of the first liquid crystal display panel. A light-absorbing sheet is provided between the light guide plate and the first liquid crystal display panel to absorb light from the light guide plate and has a light-transmitting part aligned with the first liquid crystal display panel in a direction from the light guide plate toward the first liquid crystal display panel to transmit light from the light guide plate to the first liquid crystal display panel. A reflective polarizing sheet is provided between the second liquid crystal display panel and the light guide plate. The light-absorbing sheet eliminates brightness unevenness on the second liquid crystal display panel, which would otherwise occur due to the influence of the first liquid crystal display panel, and the reflective polarizing sheet allows effective utilization of light from the light guide plate.
Abstract:
The subject of the invention is an element having variable optical properties, comprising: (a) a system having electrically controlled variable light scattering, of the optical-valve or liquid-crystal system type, a suspended-particle system or a holographic or thermotropic system (a′) which is associated with (b) at least one absorbent element, absorbing at least in the visible range. It applies especially to the manufacture of backprojection screens.