Abstract:
A contactless image sensor comprises a light source (1,2) for irradiating the light onto an original, photoelectric converting elements for photoelectrically converting the light from the original (4), an image pickup device (7) for guiding the light from the original to the photoelectric converting elements (9), and a frame body (10) for holding them. The frame body includes a light transmitting portion (6) and a light non-transmitting portion and they are integrally pressing-out molded by plastics. Namely, the optical path portion (6) and the optical guide (3) of the frame body are made of transparent plastics and the other portions of the frame body are made of colored plastics having a light shielding performance.
Abstract:
An image read/write head (A) includes: a substrate (4) having a first widthwise side portion (4c), a second widthwise side portion (4d), and an upper surface carrying a row of light-receiving elements (2) longitudinally of the substrate; an elongate case (1) mounted to the upper surface of the substrate (4) to enclose the light-receiving elements (2); a transparent cover (19) mounted to an upper surface of the case (1) for contact with a document to be fed; a light source (3) disposed in the case for illuminating the document; a lens (5) disposed in the case for causing an image of the document (D) illuminated by the light source (3) to be formed on the light-receiving elements (2); and a row of printing elements (8) carried by the an upper surface of the substrate at an excess portion which is provided by extending the first side portion (4c) beyond a lower edge of the case (1) by a predetermined amount. The transparent cover (19) is inclined such that the cover (19) becomes progressively farther from the substrate as it extends toward the first side portion (4c) of the substrate (4).
Abstract:
A contact-type image sensor (20) comprises a case (21), a glass cover (22) provided on an upper surface of the case (21), a bottom substrate (23) mounted in a bottom surface of the case (21), light receiving elements (24) mounted on the bottom substrate, light emitting elements (25) for irradiating an object (D) on the glass cover (22) with light, and a rod lens array (27) for collecting the light reflected by the object (D) on the glass cover (22) onto the light receiving elements (24). The light emitting elements (25) are mounted on the bottom substrate (23). The contact-type image sensor further comprises a light guide (26) provided in the case (21) for efficiently directing the light from the light emitting elements (25) to a predetermined region (L) of the glass cover (22). The case (21) is formed with a holding groove (29) for receiving the rod lenses array (27) from above, and the light guide (26) has ends each formed with a tab (37) for pressing the rod lens array (26) from above.
Abstract:
A contact-type image sensor (20) comprises a case (21), a glass cover (22) provided on an upper surface of the case (21), a bottom substrate (23) mounted in a bottom surface of the case (21), light receiving elements (24) mounted on the bottom substrate, light emitting elements (25) for irradiating an object (D) on the glass cover (22) with light, and a rod lens array (27) for collecting the light reflected by the object (D) on the glass cover (22) onto the light receiving elements (24). The light emitting elements (25) are mounted on the bottom substrate (23). The contact-type image sensor further comprises a light guide (26) provided in the case (21) for efficiently directing the light from the light emitting elements (25) to a predetermined region (L) of the glass cover (22). The case (21) is formed with a holding groove (29) for receiving the rod lenses array (27) from above, and the light guide (26) has ends each formed with a tab (37) for pressing the rod lens array (26) from above.
Abstract:
A lens array unit (U1) comprises a first and a second lens arrays (1, 2). The first and the second lens arrays (1, 2) include respectively a plurality of lenses (11, 21), each serving as a convex lens, for formation of a non-inverted, non-magnified image. In each of the lens arrays, the lenses (11, 21) and supports (10, 20) which hold the lenses are formed integrally of a translucent resin. Therefore, manufacture of the lens array is easy.
Abstract:
An apparatus for scanning a document, including scanning a photograph, the apparatus including a contact image sensor (CIS), the apparatus designed to reduce the friction between the contact image sensor and the document being scanned. The reduction is achieved by reducing the friction by use of a non-stick material or by reducing the static electricity forces or both. The preferred embodiment is a CIS whose housing is made of a non-stick material which also is static electricity dissipative.
Abstract:
An image read/write head (A) includes: a substrate (4) having a first widthwise side portion (4c), a second widthwise side portion (4d), and an upper surface carrying a row of light-receiving elements (2) longitudinally of the substrate; an elongate case (1) mounted to the upper surface of the substrate (4) to enclose the light-receiving elements (2); a transparent cover (19) mounted to an upper surface of the case (1) for contact with a document to be fed; a light source (3) disposed in the case for illuminating the document; a lens (5) disposed in the case for causing an image of the document (D) illuminated by the light source (3) to be formed on the light-receiving elements (2); and a row of printing elements (8) carried by the an upper surface of the substrate at an excess portion which is provided by extending the first side portion (4c) beyond a lower edge of the case (1) by a predetermined amount. The transparent cover (19) is inclined such that the cover (19) becomes progressively farther from the substrate as it extends toward the first side portion (4c) of the substrate (4).
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which comprises a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.
Abstract:
An image sensor has a frame, a transparent cover which is mounted on the top of the frame and on which an original document is to be placed, and a base plate disposed within the frame. On the base plate, there are mounted a light emitting section, a lens for condensing the reflective light and a light receiving section. The base plate is disposed within the frame so that the light emitting section is located directly below the transparent cover and the optical axis of the condensing lens is inclined relative to the plane of the transparent cover. Light rays emitted from the light emitting section enter the transparent cover in a direction substantially perpendicular to the plane thereof and are reflected by the transparent cover slantingly toward the light receiving section. By arranging the condensing lens inclined relative to the plane of the transparent cover, the vertical distance between the light receiving section and the transparent cover can be reduced. The entire configuration of the frame is tapered toward the transparent cover on the top thereof. Thus, the image sensor can be more easily assembled into any electronic instrument. The light emitting section is enclosed by walls which are increased in reflectivity, resulting in an increase of the amount of irradiating light. The condensing lens can be mounted and held in a recess formed in the top of the frame without the need for any adhesive.
Abstract:
An image sensor has a supporting member for integrally supporting a reading system including illuminating means for illuminating an original document, a photoelectrically converting means and imaging means for imaging light reflected by the surface of the original document onto the photoelectrically converting means, and has a member disposed on the side surface of the supporting member. The image sensor has two or more substantially independent spaces formed in the supporting member. The illuminating means, the imaging means and the photoelectrically converting means are accommodated in one of the spaces.