Abstract:
A self-luminescent light source for a liquid crystal display watch characterized by comprising a fluorescent substance layer which has a light reflectivity and which contains a radioactive substance in at least a part thereof, a reflective layer which is disposed on one surface of the fluorescent substance layer and which serves to reflect and scatter fluorescence from the fluorescent substance layer, a case which is disposed on the side of the reflective layer remote from the fluorescent substance layer and which serves to perform shielding from radiation given out from the radioactive substance, and a cover which is disposed on the side of the fluorescent substance layer remote from the reflective layer and which serves to absorb the radiation given out from the radioactive substance and to transmit the light from the fluorescent substance layer.
Abstract:
Composite materials comprising a mesoflower structure, methods of preparing the composite material, and methods of detecting heavy metal ion using the composite material are described herein. In some embodiments, a silica-coated gold mesoflower with a layer of silver quantum clusters may be capable of detecting Hg2+ ions in a sample at zeptomolar concentrations.
Abstract:
A system for obtaining a measurement of a species of interest. The system includes one or more reference regions, a sensor region, an exciter unit, a detector unit and a processing unit. The exciter unit exposes first and second chemical transducers in the reference and sensor regions, respectively, to an excitation light while they are exposed to reference environments and an analyte, respectively. The detector unit measures responses of the first and the second chemical transducers to the excitation light. The processing unit determines a compensation for aging of the first chemical transducer from a discrepancy between the measurements of the responses of the first chemical transducer and reference responses. The processing unit applies the compensation for aging to the measurement of the response of the second chemical transducer to obtain the measurement of the species of interest in the analyte.
Abstract:
Methods and apparatus for article authentication include an exciting radiation generator that exposes an area of the article to exciting radiation, and at least two radiation detectors that detect emitted radiation from the area in a first band and in a second band that does not overlap the first band. The first band corresponds with a first emission sub-band of an emitting ion, and the second band corresponds with a second emission sub-band of the same emitting ion. A processing system calculates a comparison value that represents a mathematical relationship (e.g., a ratio) between a first intensity of the emitted radiation in the first band with a second intensity of the emitted radiation in the second band, and determines whether the comparison value compares favorably with an authentication parameter. When the comparison value compares favorably with the authentication parameter, the article is identified as being authentic.
Abstract:
A measurement system that optically measures in turn a plurality of samples arranged in an array via an objective lens and an imaging lens is disclosed, which is characterized by comprising an actuator means that moves the above described objective lens corresponding to each position of the above mentioned samples, and a photo-detecting part that detects a sample image via the above objective lens and imaging lens.
Abstract:
Alpha particles are directed and focused onto a delta-ray cathode target, where an alpha fusion reaction is generated. Delta radiation or high-energy secondary electrons are generated from the said alpha reaction. The cathode also becomes thermally active generating thermionic electrons. The electrons flow in the direction of an anode that absorbs their energy, generating electrical current in one direction, known in the electrical field as direct current.
Abstract:
There is disclosed a self-luminous source of light preferably as applied to illuminated signs and safety markers which emits a high level of uniform light. The invention utilizes a beta emitter, preferably tritium gas, which is contained within a sealed glass enclosure having an interior coating of a phosphor. The glass enclosure is contained within an outer enclosure formed of a plastic filled with a fluorescent dye. The phosphor coating on the glass enclosure of the tritium gas absorbs beta radiation from the tritium and emits radiation in a wavelength approximately 360 nanometers which excites the fluorescent dye in the plastic outer enclosure.