Abstract:
Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For each of a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, a first optical signal is measured using a first ellipsometer or a first reflectometer and a second optical signal is measured using a second ellipsometer or a second reflectometer. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured first and second optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets.
Abstract:
Disclosed are methods and apparatus for analyzing the Haze data provided by an optical inspection tool. The Haze data is analyzed so as to detect defects associated with the specimen surface. In general, the Haze data is first conditioned so that background noise which corresponds to low frequency variation on the specimen is separated or removed from the Haze data prior to analysis of such Haze data. In a specific embodiment, low frequency variations in the specimen surface are characterized, in effect, as an optical surface upon which an incident beam is directed. In one example, the Haze data that corresponds to the specimen surface is characterized with a polynomial equation, such as a Zernike equation. In other words, a polynomial equation is fit to the low frequency or background noise of the Haze data. The Haze data that conforms to this resulting polynomial equation is then subtracted from the original Haze data to result in residual data, where slow variations in surface roughness are subtracted out, leaving possible defect information in the residual Haze data. This residual Haze data may then be analyzed to determine whether the specimen contains a defect. Techniques for enhancing detection of defects by analyzing the residual data are also disclosed. Preferably, techniques for calibrating the resulting residual data so that it is normalized between different inspection tools are also provided.
Abstract:
Disclose is a combined scatterometry mark comprising a scatterometry critical dimension (CD) or profile target capable of being measured to determine CD or profile information and a scatterometry overlay target disposed over the scatterometry CD or profile target, the scatterometry overlay target cooperating with the scatterometry CD or profile target to form a scatterometry mark capable of being measured to determine overlay.
Abstract:
Disclosed is a method for determining an overlay error between at least two layers in a multiple layer sample. A sample having a plurality of periodic targets that each have a first structure in a first layer and a second structure in a second layer is provided. There are predefined offsets between the first and second structures. Using a scatterometry overlay metrology, scatterometry overlay data is obtained from a first set of the periodic targets based on one or more measured optical signals from the first target set on the sample. Using an imaging overlay metrology, imaging overlay data is obtained from a second set of the periodic targets based on one or more image(s) from the second target set on the sample.
Abstract:
Disclosed are methods and apparatus for efficiently setting up and maintaining a defect classification system. In general terms, the setup procedure optionally includes automatically grouping a set of provided defects (e.g., defect images) and presenting a representative set from each defect group to the user for classification. Alternatively, a representative set from the whole defect set may be presented to the user for classification without first grouping the defects into groups. The representative set does not include all of the defects and is selected to optimize manual classification efficiency. After the initial manual classification of the representative defects, the setup procedure includes an automatic procedure for classifying the non-reviewed or unclassified defects based on the manual class codes from the user-reviewed defects. After the automatic classification operation, the user may also be presented with defects from each class which may require re-classification. In particular embodiments, the user is iteratively presented with defects which have classifications that are suspect, which are near classification boundaries, or have classifications that have a low confidence level until each class is pure or contains a same type of defect classes as assigned by the user. After all the defects are manually classified through the above procedure, the classifier training set may be created automatically. New type of defects may be detected by using the existing training defects or the classified defects as the reference defects. The classifier maintenance may be done by merging existing classifiers together, adding new type of defects into the classifier, adding new boundary defects into the classifier, and removing redundant defects from the classifier.
Abstract:
Techniques for detecting endpoints during semiconductor dry-etching processes are described. The dry-etching process of the present invention involves using a combination of a reactive material and a charged particle beam, such as an electron beam. In another embodiment, a photon beam is used to facilitate the etching process. The endpoint detection techniques involve monitoring the emission levels of secondary electrons and backscatter electrons together with the current within the sample. Depending upon the weight given to each of these parameters, an endpoint is identified when the values of these parameters change more than a certain percentage, relative to an initial value for these values.
Abstract:
Methods and apparatus are providing for inspecting a test sample. An electron beam is tuned to cause secondary electron emissions upon scanning a target area. Reactive substances are introduced to etch and remove materials and impurities from the scan target. Residual components are evacuated. In one example, a laser is used to irradiate and area to assist in the removal of residual components with poor vapor pressure.
Abstract:
Techniques for utilizing a microscope inspection system capable of inspecting specimens at high throughput rates are described. The inspection system achieves the higher throughput rates by utilizing more than one detector array and a large field of view to scan the surface of the semiconductor wafers. The microscope inspection system also has high magnification capabilities, a high numerical aperture, and a large field of view. By using more than one detector array, more surface area of a wafer can be inspected during each scanning swath across the semiconductor wafers. The microscope inspection system is configured to have a larger field of view so that the multiple detector arrays can be properly utilized. Additionally, special arrangements of reflective and/or refractive surfaces are used in order to fit the detector arrays within the physical constraints of the inspection system.
Abstract:
Provided are apparatus and methods for detecting phase defects. The invention relies generally on the distortion of light as it passes through defects in phase shift masks to detect these defects. Light traveling through a defect, such as a bump in an etched area will travel at a different angle than light traveling through air. In order to enhance the signals generated from the defects, the invention in several embodiments provides a multiple element detector having at least four elements, arranged in a radially symmetric configuration. Individual elements of the detector are selected to form a differential signal based on the configuration of pattern lines in the area proximate to the defect. The resulting differential signal is used to generate an image signal and to identify phase defects.