Abstract:
A method and apparatus for compensating for deficiency in the illumination light from a light source (102) is provided, where the spectrum in the visible range of light from the light source is determined, and a deficiency at a wavelength or band of wavelengths in the visible range of light is determined therefrom, a color sequencing device is provided having a set of filters (106) comprising red, green and blue filter segments, and an additional color balancing filter segment, and wherein a the color balancing segment is constructed so as to preferentially pass a band or bands of wavelengths, which band or bands are determined based on the determined deficiency of the light source.
Abstract:
Lubricants for lubricating surfaces of microelectromechanical devices (100) are disclosed. Specifically, the lubricants can be applied to the contacting surfaces of the microelectrochemical devices so as to remove stiction of the contacting surfaces.
Abstract:
The spatial light modulator of the present invention comprises an array of micromirrors, each of which has a reflective deflectable mirror plate. A set of posts are provided for holding the mirror plates on a substrate, but not all micromirrors of the micromirror array have posts.
Abstract:
A method and a color rendering filter for compensating for deficiency in illumination light from a light source in display systems are provided. The color rendering filter has a color that is determined based upon the spectrum, sensitivity of viewer's eyes over the visible light range, and a pre-determined waveband threshold.
Abstract:
Disclosed herein a microelectromechanical device having first and second substrates that are bonded together with a gap formed therebetween. A plurality of functional members is disposed within the gap. The two substrates are bonded with a bonding agent that comprises an electrically conductive adhesive material.
Abstract:
The present invention provides a lubricant container inside a microelectromechanical device package. The lubricant container contains selected lubricant that evaporates from the container and contact to a surface of the microelectromechanical device for lubricating the surface.
Abstract:
A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors.In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
A micromirror device is disclosed, along with a method of making such a micromirror device that comprises a mirror plate, a hinge and an extension plate. The extension plate is formed on the mirror plate and between the mirror plate and the electrode associated with the mirror plate for rotating the mirror plate. The.extension plate can be metallic or dielectric. Also disclosed is a method of making such a micromirror device. In particular, the extension plate is formed after the formation of the mirror plate. Moreover, also disclosed is a projection system that comprises a spatial light modulator having an array of such micromirrors, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
Methods and apparatus are provided for preventing charge accumulation in microelectromechanical systems, especially in micromirror array devices having a plurality of micromirrors. Voltages (V1, V2, V3, V4 of element 144, 146) are applied to the micromirrors for actuating the micromirrors. Polarities of the voltage differences between mirror plates (134) and electrodes (140) are inverted so as to prevent charge accumulation.