Abstract:
A wireless communication system that communicates (500) frames having first and second sub-frames (510, 520) with time-frequency resource elements. The first sub-frame including first reference symbol information and the second sub-frame including second reference symbol information, and not more than one of the first and second sub-frames including user specific radio resource assignment information. Wireless communication entities receiving the frames process the time-frequency elements of the first sub-frame using the first reference symbol information and processing the time-frequency elements of the second sub-frame using the second reference symbol information.
Abstract:
A method and apparatus for handling a difference between a first and second message prior to decoding is disclosed The signaling scenapo illustrated by FIG 1 and using the codeword properties defined herein, the vanous embodiments may combine multiple messages under the hypothesis that the value of a message portion corresponding to any subsequent observed transmission is different Accordingly, a first set of observations (LLR's) (601 ) may be compared with a second or subsequent set of observations (603), and if the observations are found sufficiently similar, may be further compared in the context of a hypothesized difference (607) in constituent message information words Once any difference in information words is identified, the second or subsequent set of observations may be combined (611) with the first set of observations after suitable arithmetic processing, and prior to further decoding.
Abstract:
A wireless communication network entity (400) and a method therein wherein data is encoded using an error correcting code to form a first codeword, for example, a cyclic redundancy code, including redundancy. A second codeword is generated by encoding additional data on a portion of the first codeword, wherein the portion of the first codeword on which the additional data is encoded being within an error correction capability of the first codeword.
Abstract:
A wireless communication infrastructure entity (200) and methods therein including assigning a first wireless communication terminal to one or more resources, and sending non-scheduling information to the first wireless communication terminal on an RRBP field in a downlink block based on whether information is received from the first wireless communication terminal on the assigned resource.
Abstract:
A method and apparatus for jointly decoding a first and second message is disclosed. The signaling scenario illustrated by FIG. 1 and using the codeword properties defined herein, the various embodiments may combine multiple messages under the hypothesis that the value of a message portion corresponding any subsequent observed transmission is different. Accordingly a first buffer may store the first observed message frame (509) and a second buffer may sum the LLR's of subsequent observed frames (513). In the embodiments disclosed, two decoding hypotheses are required only; a first where the two buffers are combined directly (513) and a second where the difference codeword bit LLR's of the first buffer (509) are inverted before combining with those of the second buffer (519). A maximum of N transmissions is allowed by the receiver (523), after which a decoding failure is declared.
Abstract:
A method in a wireless communication network (100) wherein information is communicated in a frame structure wherein each frame includes multiple sub-frames, including grouping at least two wireless communication terminals in a group, assigning the group to less than all sub-frames constituting a communication frame, and assigning a radio resource assignment control channel of one or more assigned sub-frames to the group. The control channel is used to assign radio resources to one or more terminals of the group.
Abstract:
An apparatus and method for receiving a message stream on a channel (140). A message (160) is received (320) on the channel. Information regarding the bits of a successfully decoded message is added (340) to a message attributes list (275) if the message is successfully decoded. An attempt is made to decode (330) a subsequent message based on the information in the message attributes list.
Abstract:
The present invention provides a method for receiving broadcast data in a system where broadcast data is transmitted on a plurality of frequencies. A user device monitors (302) a first frequency (108) for broadcast data to be transmitted on the first frequency. The device receives on the first frequency a notification of a broadcast data session which is to be sent on a second frequency (114) that is different from the first frequency. The device then determines a configuration associated with the second frequency and in accordance with receiving the broadcast data session and then configures (310) to receive the broadcast data session in accordance with the determined configuration. After receiving the broadcast data session, the device returns to monitoring the first frequency.
Abstract:
A method and apparatus for interrupting a transmission of a multicast signal includes a common channel selector (106) coupled to a receiver (102) to receive common channel information (116) therefrom. A repetition value calculator (108) receives measurement occasion information (118) from the common channel selector (106) to calculate a repetition factor (120). A system frame number comparator (110) determines if a channel measurement occasion (128) should be performed based on the repetition factor (120), a common identifier (124) and a largest common channel transmission time interval (122). The method and apparatus further includes a measurement occasion generator (112) coupled to the system frame number comparator (110), wherein if a measurement occasion is to be performed, a measurement occasion command signal (126) is provided to the measurement occasion generator (112) and the measurement occasion generator generates the channel measurement occasion (128).
Abstract:
A method for reducing interference in a desired signal in a GSM communication system uses a finite-impulse-response filter for alternate linear equalization. The method includes a first step (300) of inputting a burst of data of a received waveform including interference from a channel of the communication system. A next step (302) includes training the finite-impulse-response filter with a set of symbols of specific quadrature phase, known a priori, in the burst of data of the received waveform. For example known real only and imaginary only symbols are alternatively selected from a midamble of the data burst. A next step (304) includes operating on the received waveform with the finite-impulse-response filter to alternately linearly equalize the burst of data to provide an estimate of the desired signal.