Abstract:
A hollow graphitic nanocarbon of which an inner part is hollow, and which has a graphite layer formed on an outer part thereof prepared using specific polymers containing metal catalysts is provided to have an excellent graphitic crystal properties through a low temperature of heat treatment. A preparation method of a hollow graphitic nanocarbon comprises: a first step of a mixed aqueous solution into which an inorganic material with a particle size of 20 to 100 nm and a transition metal or lanthanide metal catalytic precursor are dissolved; a second step of subjecting the mixed aqueous solution and a carbon precursor having a hydroxy group to a polymerization reaction in the presence of an acid to prepare an inorganic material-metal-carbon precursor composite; a third step of carbonizing the inorganic material-metal-carbon precursor composite to form an inorganic material-metal-carbon composite; and a fourth step of subjecting the inorganic material-metal-carbon composite to base treatment and acid treatment to remove an inorganic material and a metal from the inorganic material-metal-carbon composite. As hollow particles of which an inner part is hollow, and which has a graphite layer formed on an outer portion thereof, a hollow graphitic nanocarbon is characterized in that the hollow inner part of the particles is in a diameter range from 20 to 160 nm, the graphite layer has a thickness range from 3 to 30 nm, and the particles have a particle size range from 30 to 220 nm.
Abstract:
An electrochemical analysis apparatus for developing a fuel cell catalyst is provided to compare quantified current densities of catalyst points in cyclic voltammetry(CV) and quickly derive composition ratio of individual metal in developing alloy catalysts. The apparatus is fabricated of: an automatic dispenser(15) that has optionally relative electrode(21) and reference electrode(22) or micro injector and is movable in X-Y-Z axis direction; a precursor chamber(16) that contains a metal precursor solution generated by dissolving different metal salts in a proper solvent; a combinatorial solution storage plate(17) that has multiple tubes containing a mixture solution which comprises the metal precursor solution with different compositions and contents; a reactive electrode array(18) having multiple catalyst points based on multi-component alloy, which are formed by dispensing the mixture solution to the conductive plate; a microfine hole plate(19) having multiple thru-path holes corresponding to the catalyst points; and a potential measuring device(23) electrically connected to the array as well as the relative electrode and the reference electrode, simultaneously.
Abstract:
Provided is a functional additive for an electrolyte, which inhibits the reaction heat generated from side reactions between a cathode and an electrolyte, and thus improves the quality of a battery while maintaining the battery quality. The electrolyte comprises: (a) an electrolyte salt; (b) an organic solvent; and (c) at least one compound selected from the group consisting of the compounds represented by the following formulae (I) and (II). In formulae (I) and (II), each of R1, R2 and R3 represents independently H or a C1-C6 lower alkyl; R4 is a single bond or the formula (a); X is -O- or -OC(O)O-; each of n and m is an integer of 0-1000; each of p and q is an integer of 0-20, with the proviso that p and q cannot represent 0 at the same time; r is an integer of 1-6; each o i and j is an integer of 1-1000; and s is an integer of 1-20.
Abstract:
본 발명은 폴리실록산계 화합물을 포함하는 고체 고분자 전해질 조성물에 관한 것으로서, 더욱 상세하게는 메틸 실록산 폴리머 직쇄에 폴리알킬렌옥시드기 및 아크릴기를 측쇄로 도입하여 가교가 용이하고 상기 아크릴기의 농도에 따라 가교도를 조절할 수 있는 폴리실록산계 화합물과, 상기 폴리실록산계 화합물을 가교제로 사용하여 상온에서 이온 전도도와 전기화학적 안정성이 개선되어 전해질 박막, 소형 및 대용량 리튬-폴리머 이차전지의 고분자 전해질 등으로 적용할 수 있을 뿐만 아니라 상기 폴리실록산계 화합물의 가교도 조절에 의해 전해질의 기계적 물성을 용이하게 조절할 수 있는 고체 고분자 전해질 조성물에 관한 것이다. 실록산 폴리머, 이온 전도도, 가교성, 고체 고분자 전해질
Abstract:
본 발명은 폴리실록산계 화합물과 이를 이용하는 고체 고분자 전해질 조성물에 관한 것으로서, 더욱 상세하게는 메틸 실록산 폴리머 직쇄에 폴리알킬렌옥시드기 및 아크릴기를 측쇄로 도입하여 가교가 용이하고 상기 아크릴기의 농도에 따라 가교도를 조절할 수 있는 폴리실록산계 화합물과, 상기 폴리실록산계 화합물을 가교제로 사용하여 상온에서 이온 전도도와 전기화학적 안정성이 개선되어 전해질 박막, 소형 및 대용량 리튬-폴리머 이차전지의 고분자 전해질 등으로 적용할 수 있을 뿐만 아니라 상기 폴리실록산계 화합물의 가교도 조절에 의해 전해질의 기계적 물성을 용이하게 조절할 수 있는 고체 고분자 전해질 조성물에 관한 것이다.
Abstract:
본 발명은 리튬 안정성이 향상된 폴리알킬렌 옥시드계 고분자 전해질 조성물에 관한 것으로서, 더욱 상세하게는 리튬염과, 연결 중심원자 주위에 2개 이상의 페닐알킬렌글리콜 아크릴레이트의 관능기가 도입되어 있는 가교제와 경화형 개시제 및 비수용액계 극성용매가 포함되어 있는 전해질 조성물 중에, 리튬 표면에 안정한 보호층을 형성하고 이온전도 경로를 쉽게 유지할 수 있도록 하는 폴리알킬렌 옥시드 작용기를 가지고 있는 특정의 리튬 표면 안정제를 추가로 첨가함으로써 충방전시 리튬 금속과 전해질 계면간의 안정화를 도모하고 리튬 충방전 효율을 크게 향상시키는 효과를 가지고 있으므로, 금속 리튬을 음극으로 사용하는 리튬 금속-고분자 이차전지의 전해질로 유용한 폴리알킬렌 옥시드계 고분자 전해질 조성물에 관한 것이다.
Abstract:
PURPOSE: Provided is a porous nanocarbon spherical support, which has improved conductivity and high surface area by heat treatment and is useful in manufacturing an electrode catalyst for a direct methanol fuel cell by dispersing Pt/Ru alloy nanoparticles. CONSTITUTION: The porous nanocarbon spherical support is manufactured by the method comprising the steps of: providing porous nanocarbon spherical particles by using a conventional method; heat treating the particles at high temperature under argon atmosphere; dispersing the heat treated particles in distilled water; carrying out ultrasonic treatment and centrifugal separation; and drying the resultant particles at 100 deg.C under vacuum. The electrode catalyst for a direct methanol fuel cell is obtained by adsorbing platinum(H2PtCl6) and ruthenium(RuCl3) ions on the above heat-treated porous nanocarbon spherical support and then reducing the ions with a reducing agent(NaBH4) at room temperature.
Abstract:
본 발명은 신규 가교제와 이를 함유하는 가교형 고체 고분자 전해질에 관한 것으로서, 더욱 상세하게는 폴리알킬렌 옥시드기가 곁가지로 도입된 메틸 실록산 폴리머 양 말단에 열 또는 광에 의해 가교 가능한 아크릴기가 도입되어 있는 신규 가교제와, 상기한 신규 가교제, 리튬염, 유기 용매 및 경화형 개시제가 일정 함량비로 함유되어 있음으로써 상온에서의 이온 전도도가 우수한 전해질 박막 제조가 가능해졌고, 제막성 및 전기화학적 안정성이 우수하므로 휴대폰, 노트북 컴퓨터 등의 휴대용 정보단말기 및 캠코더 등의 기기에 적용되는 소형 리튬-폴리머 이차전지는 물론 전력평준화용 전력저장장치 및 전기자동차에 적용가능한 대용량 리튬-폴리머 이차전지의 고분자 전해질로 폭 넓게 적용 가능한 가교형 고체 고분자 전해질 조성물에 관한 것이 다.
Abstract:
PURPOSE: A π-conjugate compound for molecular electronic devices is provided. The compound can be self-assembled, has easy electron-delocalized structure by π -conjugate linkage of total molecules, and properties to easily trap electron by electric filed produced from the outside because cation is contained within the molecules. CONSTITUTION: A π-conjugate compound for molecular electronic devices is characterized by being represented by the formula(1) of R¬1-Z- £Redox|¬1-Z-R¬2, containing center £Redox| capable of oxidation/reduction, and being connected to aromatic compounds directly or via acetylene bond,, wherein R1 is selected from benzene, CH3COS-benzene, CH3SS-benzene and SiS-benzene; R2 is selected from S-COCH3-benzene and (S-benzene)2; Z is single bond or triple bond; £Redox|1 is selected from X-N+R3-benzene, N+R3-naphthalene, and N+CH3CH3R3-naphthalene; R3 is selected from hydrogen, C1-C4 alkyl and benzyl; X- is selected from I-, Cl-, Br-, CF3SO3, CH3-benzene-SO3-, C12H25-benzene-SO3-, BF4-, PF6- and SbF6-.
Abstract:
PURPOSE: A molecular electronic device having such a layer structure that gold nanoparticles are adhered to the upper part of self-assembled monolayer, and gold is deposited on the gold nanoparticles is provided, and a preparation method of the molecular electronic device is provided. CONSTITUTION: In a molecular electronic device in which gold (Au) is deposited on the upper part of monolayer, the molecular electronic device is characterized in that gold (Au) nanoparticles are assembled between the monolayer and gold (Au) deposition layer, wherein size of the gold (Au) nanoparticles is larger than size of defects formed on the monolayer. The preparation method of molecular electronic devices comprises process of manufacturing a monolayer by assembling an organic molecule into gold (Au) electrode, wherein the organic molecule is structured in such a manner that different functional groups are substituted for both ends of a molecular device; process of adhering gold nanoparticles to the upper part of the monolayer; and process of depositing gold (Au) on the upper part of the gold nanoparticles.