Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) operating in an unlicensed radio frequency spectrum band may transmit autonomously (e.g., without a resource assignment) to a base station. For example, a base station may indicate a periodic resource allocation to the UE using radio resource control (RRC) messaging. The UE may then perfonn a listen-before talk (LBT) procedure and transmit physical uplink control channel (PUCCH) or other messages using the periodic resource allocation. Thus, the UE may transmit uplink messages without receiving an assignment of uplink resources from the base station. The UE may transmit identification and synchronization information in a scheduling request (SR) resource of the autonomous PUCCH. For example, the UE may indicate a start time and duration of an autonomous uplink transmit opportunity (TxOP) using resources designated for SR transmission.
Abstract:
The present disclosure presents a method and an apparatus for planning interference measurement resources (IMRs). For example, the example method may include assigning a transmission group identifier to a cell in a wireless network, mapping the transmission group identifier assigned to the cell to a corresponding transmission pattern of a combination of zero power (ZP) and non-ZP (NZP) channel state information-reference signals (CSI-RSs) transmitted from the cell and neighbors of the cell, and receiving, at the cell, a CSI report from a user equipment (UE) in communication with the cell, wherein the CSI report is received from the UE based at least on an interference measured by an IMR at the UE corresponding to the transmission pattern. As such, IMR planning may be achieved.
Abstract:
The present disclosure presents a method and an apparatus for coordinated scheduling at a cell. For example, the example method may include receiving a plurality of channel state information (CSI) reports from one or more user equipments (UEs) served by the cell, generating a plurality of cell reports based at least on the plurality of CSI reports received from the one or more UEs, transmitting the plurality of cell reports to a central scheduling entity, receiving a selected global transmission configuration, receiving one or more additional CSI reports from the one or more UEs subsequent to transmitting the plurality of cell reports to the central scheduling entity, and identifying a UE of the one or more UEs to serve based at least on the selected global transmission configuration and the one or more additional CSI reports. As such, coordinated scheduling at a cell may be achieved.
Abstract:
Systems and methods are provided for optimizing resource usage by a network entity that detects a first channel condition for a first radio access technology (RAT) and a second channel condition for a second RAT. The network entity determines whether the first channel condition comprises a higher interference level than the second channel condition and also determines power consumption constraints. If the first channel condition comprises a higher interference level than the second channel condition, the network entity reassigns at least one antenna from the first RAT to the second RAT based at least in part on the power consumption constraints. In some embodiments, systems and methods are also provided for determining whether an access point serving an access terminal is a large cell base station or a small cell base station and determining a power management action for the access terminal.
Abstract:
Methods and apparatus for communication comprise aspects that include performing a power management procedure for configuring a subset of network entities to receive one or more of downlink signal measurements and/or one or more uplink signal measurements. The methods and apparatus further comprise aspects that include storing the one or more one or more of downlink signal measurements and/or one or more uplink signal measurements associated with the subset of network entities at a database for managing transmit power at the subset of network entities. Moreover, the methods and apparatus comprise aspects that include adjusting a transmit power value of at least one of the subset of network entities from a first transmit power value to a second transmit power value based at least in part on the one or more of downlink signal measurements and/or one or more uplink signal measurements.
Abstract:
The present disclosure presents a method and apparatus for joint power and resource management in a wireless network. For example, the disclosure presents a method for receiving reference signal received power (RSRP) measurements of one or more neighboring base stations of a base station. In addition, such an example method, may include calibrating a transmit power of the base station based at least on the received measurements, and adjusting transmit resources of the base station in response to the calibration. As such, joint power and resource management in a wireless network may be achieved.
Abstract:
Methods and apparatuses are provided that include calibrating transmit power of a femto node based on measuring one or more parameters related to usage of the femto node. The femto node can temporarily increase transmit power and analyze received measurement reports to determine a transmit power calibration. The femto node can additionally measure uplink received signal strength indicators over multiple time periods following handover of a user equipment (UE) to determine whether to increase transmit power to cover the UE.
Abstract:
Access terminals are provisioned to conduct intra - frequency, inter- frequency, and inter-RAT measurements and report physical layer identifiers of detected cells (106,108,110,112). The provisioning may involve cycling through all or a portion of a defined superset of physical layer identifier (PLI) one subset at a time. In addition, the physical layer identifiers (PLI) may be prioritized to improve the search procedure. Measurement report messages (MRMS) (including physical layer identifiers of the detected cells) are received at an access point (106) as a result of the provisioning. A neighbor cell list (118) for the femtocell is maintained based on the received measurement report messages (MRMS) and, optionally, other information. This other information may related to, for example, one or more of: physical layer identifier information (PLI) received from access terminals (104) that register with the access point, physical layer identifier information received via network listen operations (128), information regarding co-located cells (130), or physical layer identifier information received (134) from a network entity (114).
Abstract:
Methods and apparatuses are provided for determining whether to handover a device to mitigate uplink interference while achieving acceptable uplink service quality in a wireless network. One or more parameters related to a device can be evaluated to determine whether to handover the device, such as a number of transmission power reports received from the device over a period of time, a frame error rate, setpoint, or power control commands related to the uplink of the device, a received pilot signal strength at the device, an uplink throughput or buffer size at the device, etc., from which transmit power information of the device can be inferred for determining whether the device potentially interferes with access points or devices. Based on the one or more parameters, an access point can determine whether handing over the device may mitigate such uplink interference while ensuring uplink service quality, and accordingly handover the device.
Abstract:
Methods and apparatuses are provided for determining a transmission power cap for one or more devices based at least in part on pathloss measurements to one or more access points received from the one or more devices. A common transmission power cap can also be computed for assigning to devices communicating with an access point, and the transmission power cap for a given device can be adjusted when the transmission power is at or a threshold level from the common power cap to conserve signaling in the wireless network. Adjustment of the transmission power cap can additionally or alternatively be based on a received power at an access point related to signals from the device, an interference report from one or more access points, and/or the like.