Abstract:
A method of controlling a vehicle may include determining a proximity to a stuck condition based on measured vehicle motion parameters and a wheel speed measured by a wheel speed sensor associated with one or more wheels of the vehicle. The method may further include generating a notification to a driver of the vehicle in response to the proximity to the stuck condition indicating that the vehicle is either in a stuck condition or a nearly stuck condition, and responsive to driver selection of an unstuck mode, executing an unstuck algorithm to automatically control operation of the vehicle to achieve a free condition.
Abstract:
A multi-axle transport trailer having a plurality of axles includes a suspension comprising air bags associated with each axle, the air bags in communication with an air source, wherein air bags associated with different axles are capable of having different air pressures therein. The trailer further optionally includes a steering system associated with at least one axle, the axle including a tie rod connected between wheels on both ends of the axle, the steering system comprising cylinders configured to articulate the wheels, and a sensing device configured to monitor movement of the tie rod and facilitate actuating the cylinders to turn the wheels.
Abstract:
A vehicle height adjustment device includes: a pressure tank capable of storing air in a compression state; a plurality of vehicle height adjustment units that are provided in correspondence with wheels of a vehicle and individually adjust vehicle heights at the respective wheels by supplying the air from the pressure tank or returning the air to the pressure tank; an information acquisition unit that acquires turn route information during travel of the vehicle; and a control unit that raises the vehicle height at the vehicle height adjustment unit on a turn outer side more than the vehicle height at the vehicle height adjustment unit on a turn inner side such that the vehicle takes a tilt posture on the basis of the turn route information when the vehicle turns.
Abstract:
The present invention relates to a spring unit (1) for a shock absorber (100) intended for a vehicle. The shock absorber (100) comprises a damping cylinder (101), wherein the damping cylinder (101) is adapted to be telescopically arranged within the spring unit (1). The spring unit (1) comprises a hollow body (2) comprising at least one compression chamber (2b) and at least one additional chamber (3) arranged to be in fluid communication with the compression chamber such that at least a first flow of fluid (F1) is adapted to be allowed between the compression chamber (2b) and the additional chamber (3) when a threshold value is met. The invention further relates to a shock absorber (100) comprising such a spring unit (1), and a front fork comprising such a shock absorber (100) as well as a method for filling the shock absorber (100).
Abstract:
The invention relates to a gas spring system for a motor vehicle, with a gas pressure generation unit that can be connected via fluid connections to at least one gas pressure receiver. It is provided therein that the gas pressure generation unit is designed to be operated by gas pressure and configured to be operated by an energy gas pressure of an energy gas for a motor vehicle drive.
Abstract:
A method of controlling an air suspension system may include a first process of determining, by a controller, whether a current situation is a parking situation that requires reduced air pressure in an air spring, a second process of maximizing, by the controller, damping force of a shock absorber when the current situation is the parking situation that requires the reduced air pressure in the air spring, and a third process of reducing air pressure in the air spring, by the controller, by bypassing compressed air stored in the air spring to a reservoir tank.
Abstract:
A bed height adjustment system for adjusting height of a bed of a vehicle includes: an air spring supporting the bed; a valve unit connected to an air tank and configured to adjust height of the air spring by supplying and discharging air; a relay provided with a dump-signal line and a return-signal line each connected to the valve unit; a pressure switch configured to be switched between an ON state and an OFF state based on whether air is supplied from the valve unit; and an indicator that becomes illuminated state when powered when the pressure switch is in the ON state and becomes non-illuminated state when the pressure switch is in the OFF state.
Abstract:
A gas spring end member has an end member axis and is dimensioned for securement to an associated flexible spring member. The gas spring end member includes an end member wall with a base wall portion disposed transverse to the end member axis. An outer wall portion extends axially from along the base wall portion. A mounting wall portion is dimensioned to receivingly engage an associated end of the associated flexible spring member. An end wall portion extends peripherally about the end member axis and operatively connects the outer wall portion and the mounting wall portion to at least partially define an end member volume. An inner wall portion separates the end member volume into an end member reservoir disposed outward of the inner wall portion and an end member chamber disposed inward of the inner wall portion. Gas spring assemblies and suspensions systems are also included.
Abstract:
The subject invention reveals a distance measuring device comprising: a sensing module, a target module, and an evaluating module, wherein the sensing module and the target module are mountable so as to execute a movement with respect to each other along a movement trajectory, wherein the target module comprises a magnetic field generating element having a magnetic pole axis, wherein the sensing module comprises a first magnetic field sensing array being arranged distant to the movement trajectory. The sensing module and the target module can advantageously be situated within the pressurizable chamber of an air spring which is defined by (contained within) a first mounting plate, a second mounting plate, and a flexible member of the air spring.
Abstract:
The invention relates to a level control arrangement for vehicles with at least one air spring by which a vehicle body is cushioned with regard to at least one vehicle axle, having the following characteristics: a compressed air generator, which can be connected to the air spring by means of an air dryer, the compressed air generator can be connected to the atmosphere by a check valve, which opens in the intake direction of the compressed air generator, the air spring, which can be connected to the atmosphere for discharge purposes via the air dryer or a pneumatically controllable directional valve, wherein the pressure of the air spring is applied to a pneumatic control input of the first directional valve via a second controllable directional valve against the force of a reset force that acts on the pneumatic control input, the pneumatic control input of the first directional valve can be connected to the atmosphere, for the purpose of ending a discharge process of the spring, a line with a compressed air accumulator branches off from the supply line of the air spring via a first changeover valve, wherein the compressed air accumulator is connected to the intake side of the compressed air generator via a second changeover valve and a line that is connected to the compressed air path between the check valve and the compressed air generator, and wherein preferably a pneumatically operating pressure controller is contained in this line.