Abstract:
A micro-electromechanical (MEM) resonator is described that includes a substrate, a microbridge beam structure coupled to the substrate and at least one electrode disposed adjacent to the microbridge beam structure to induce vibration of the beam. The microbridge beam structure includes support sections and a beam formed between the support sections. The center region of the beam has a mass that is less than the mass of regions of the beam adjacent to the support sections.
Abstract:
A micromechanical component includes a fixed micromechanical structure having at least two electrodes being formed of one or more conductive layers, and a movable micromechanical structure in a void or chamber forming a conductive switch element, for making an electrical contact between the electrodes with the aid of the switch element. The void or chamber can have a, for example, grid-shaped device for securing the switch element against falling out and/or a seal at the top. A microsystem with an integrated circuit and the micromechanical component, as well as a production process for the component and the microsystem, are also provided. The component and the circuit can therefore be produced simultaneously in a very simple manner.
Abstract:
PROBLEM TO BE SOLVED: To improve the element characteristics of an MEMS element. SOLUTION: The MEMS element includes a first electrode 12 provided on a substrate 1, a second electrode 16 provided above the first electrode 12 and mechanically driven toward the first electrode 12, and a beam 21A which supports the second electrode in midair, and includes a sidewall part 22 provided at its end in the width direction, the sidewall part having a downward-facing protrusion. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
The present invention generally relates to a mechanism for testing a MEMS hysteresis. A power management circuit may be coupled to the electrodes that cause the movable plate that is disposed between the electrodes in a MEMS device to move. The power management circuit may utilize a charge pump, a comparator and a resistor ladder.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming fixed actuator electrodes (115) and a contact point on a substrate. The method further includes forming a MEMS beam (100) over the fixed actuator electrodes and the contact point. The method further includes forming an array of actuator electrodes (105') in alignment with portions of the fixed actuator electrodes, which are sized and dimensioned to prevent the MEMS beam from collapsing on the fixed actuator electrodes after repeating cycling. The array of actuator electrodes are formed in direct contact with at least one of an underside of the MEMS beam and a surface of the fixed actuator electrodes.