Abstract:
A nano scale resonator, a nano scale sensor, and a fabrication method thereof are provided. The nano scale resonator includes a resonance unit of nano scale configured to resonate based on an applied signal, and an anchor on a substrate, the anchor being configured to support the resonance unit, the anchor having an air gap within boundaries of the anchor, the resonance unit, and the substrate, the air gap being configured to reflect a vertical wave occurring in the resonance unit.
Abstract:
A semiconductor device, includes a semiconductor substrate (10) having a first (12a) and a second (12b) side. There is provided at least one via (15) extending through the substrate (10) having first (16a) and second (16b) end surfaces, the first end surface (16a) constituting a transducer electrode for interacting with a movable element (14) arranged at the first side (12a) of the substrate (10). A shield (17) is provided on and covers at least part of the first side (12a) of the substrate (10), the shield/mask (17) including a conductive layer (19a) and an insulating material layer (19b) provided between the substrate (10) and the conductive layer (19a). The mask has an opening (18) exposing only a part of the first surface (16a) of the via. Preferably the opening (18) in the mask is precisely aligned with the movable element, and the area of the opening is accurately defined.
Abstract:
PURPOSE: A nanoscale resonator, a nanoscale sensor, and a manufacturing method thereof are provided to use an air gap and an anchor of the same height, thereby improving a crystal characteristic deterioration problem of a resonant layer due to the inclined structure. CONSTITUTION: A resonant unit (210) resonates based on an applied signal. Based on the laser interferometeric lithography using the interference fringes of light, the resonant unit is formed in the nanoscale. The resonant unit comprises a first electrode (261), a second electrode (263), resonant layers (251,253), and a sub resonant unit (211). An air gap (220) is located in the upper part of a substrate (240) and reflects the vertical directional waive which is generated from the resonant unit. Anchors (231,233) are located on both sides of the air gap. The anchors have the same gap with the air gap and support the resonant unit. Based on the laser interferometeric lithography using the interference fringes of light, the resonant unit of the nanoscale is formed.
Abstract:
PURPOSE: An MEMS pH sensor having an Ag/AgCl electrode structure and a method for manufacturing the same are provided to expand life span of the MEMS pH sensor by minimizing loss of an Ag/AgCl electrode in KCl solution. CONSTITUTION: A pair of Ag layers including solvent and powder are obtained by silk printing Ag paste on a silicon wafer(22). After removing a solvent component from the Ag layers, a powder component of the Ag layers is cured, thereby obtaining a pair of cured Ag layers. Then, the cured Ag layers are subject to an electrolysis process in such a manner that an AgCl layer is formed on an upper surface of the Ag electrode, thereby forming a pair of Ag/AgCl electrodes. The Ag/AgCl electrodes are formed on a reference electrode(14) and a detection electrode(16) of the MEMS pH sensor.
Abstract:
In one example, an electronic device includes a semiconductor sensor device having a cavity extending partially inward from one surface to provide a diaphragm adjacent an opposite surface. A barrier is disposed adjacent to the one surface and extends across the cavity, the barrier has membrane with a barrier body and first barrier strands bounded by the barrier body to define first through-holes. The electronic device further comprises one or more of a protrusion pattern disposed adjacent to the barrier structure, which can include a plurality of protrusion portions separated by a plurality of recess portions; one or more conformal membrane layers disposed over the first barrier strands; or second barrier strands disposed on and at least partially overlapping the first barrier strands. The second barrier strands define second through-holes laterally offset from the first through-holes. Other examples and related methods are also disclosed herein.
Abstract:
A recess is formed in one silicon substrate. A silicon oxide film is formed in another one silicon substrate at a portion space apart from a space-to-be-formed region. The silicon oxide film has a groove surrounding the space-to-be-formed region and extending to an outer periphery of the other one silicon substrate. Further, the other one silicon substrate and the one silicon substrate are directly bonded to each other via the silicon oxide film so as to cover the groove. A gas discharge passage, a stacking structure of the silicon substrates and the silicon oxide film are formed, and the space is formed inside the stacking structure by the recess. Then, by the heat treatment, the gas inside the space is discharged to the outside of the stacking structure through the gas discharge passage.
Abstract:
A low power consumption multi-contact micro electro-mechanical strain/displacement sensor and miniature autonomous self-contained systems for recording of stress and usage history with direct output suitable for fatigue and load spectrum analysis are provided. In aerospace applications the system can assist in prediction of fatigue of a component subject to mechanical stresses as well as in harmonizing maintenance and overhauls intervals. In alternative applications, i.e. civil structures, general machinery, marine and submarine vessels, etc., the system can autonomously record strain history, strain spectrum or maximum values of the strain over a prolonged period of time using an internal power supply or a power supply combined with an energy harvesting device. The sensor is based on MEMS technology and incorporates a micro array of flexible micro or nano-size cantilevers. The system can have extremely low power consumption while maintaining precision and temperature/humidify independence.
Abstract:
A device has a latching mechanism including a catch element having at least two catches, and a pawl configured to engage in a catch interstice between two catches. The catch element is movable in relation to the pawl in a freewheeling direction, and a movement of the catch element in relation to the pawl in a blocking direction may be blocked by means of the pawl. The device further includes a deflectable actuator configured to move the catch element and the pawl relative to each other on a catch-by-catch basis in the freewheeling direction by means of deflection. According to the invention, the device also includes an electric component configured to change its electric property as a function of the catch-wise movement of the catch element in relation to the pawl.
Abstract:
The present disclosure provides an ultrasonic transducer and a method for manufacturing an ultrasonic transducer, a display substrate and a method for manufacturing a display substrate. The method for manufacturing the ultrasonic transducer includes: forming a via hole in a substrate; forming a structural layer on a side of the substrate, the structural layer cover the via hole; and etching the structural layer from a side of the substrate away from the structural layer by using the substrate formed with the via hole as a blocking layer, to form a cavity at a position of the structural layer corresponding to that of the via hole.
Abstract:
A method for forming a filter net on an MEMS sensor and an MEMS sensor are disclosed. The method comprises the following steps: disposing a dissociable adhesive tape on a base material, and forming a filter net on an adhesive surface of the dissociable adhesive tape; transferring the filter net on a film to form a self-adhesive coiled material; and transferring and adhering the filter net on the self-adhesive coiled material to collecting a hole of the MEMS sensor. The filter net formed by the method have fine and uniform meshes, and a yield is high. In addition, the method is suitable for large-scale and industrialized production.