Abstract:
Materials and methods are provided for fabricating microfluidic devices. The materials include low surface energy fluoropolymer compositions having multiple cure functional groups. The materials can include multiple photocurable and/or thermal-curable functional groups such that laminate devices can be fabricated. The materials also substantially do not swell in the presence of hydrocarbon solvents.
Abstract:
It is an object of this invention to prevent a resistor material and an electrode material from diffusing and suppress variation in electric resistance. In a device including a plurality of metal layers of different compositions on a substrate and a second structure made of a material, such as glass paste, requiring a firing process at the time of formation, an intermediate layer is formed between a first metal layer and a second metal layer forming the first structure. The intermediate layer is of an intermetallic compound including one or more metallic elements in the first metal layer and one or more metallic elements in the second metal layer. The melting point of the intermetallic compound is higher than a firing temperature when the second structure is formed, and the intermetallic compound is produced at a temperature higher than the firing temperature for forming the second structure.
Abstract:
A microchip which comprises: a resinous base having a plurality of fine channels formed on one side thereof, one or more cylindrical parts disposed so as to protrude from the other side, and a through-hole which pierces each cylindrical part along the axis thereof and communicates with the fine channel so that the diameter of the inner wall of the through-hole gradually decreases from the tip end of the cylindrical part toward the fine channel at a first inclination angle; and a resinous covering member bonded to that side of the resinous base on which the fine channels have been formed. The microchip has been configured so that a liquid sample can be introduced from the tip end of each cylindrical part through the through-hole. The wall thickness of the cylindrical part on the end side where a liquid sample is to be introduced has been made smaller than the wall thickness thereof on the base side where the cylindrical part has been formed, by forming a step therebetween.
Abstract:
Materials and Methods are provided for fabricating microfluidic devices. The materials include low surface energy fluoropolymer compositions having multiple cure functional groups. The materials can include multiple photocurable and/or thermal-curable functional groups such that laminate devices can be fabricated. The materials also substantially do not swell in the presence of hydrocarbon solvents.
Abstract:
A micro-channel chip is produced while preventing a resinous film from sagging into the channel. The chip hence inhibits a liquid specimen from residing therein. With the chip, quantitativeness and reproducibility are heightened. A process for producing a micro-channel chip is provided which comprises bonding a resinous film 020 to that side of a resinous substrate 010 which has channel grooves 011 formed. The deflection temperature under load of the resinous substrate 010 Ts (.degree. C), and the deflection temperature under load of the resinous film 020, Tf (degree. C), satisfy Ts>Tf The process includes a pressing stage in which the resinous substrate 010 and the resinous film 020 are press-bonded at a bonding temperature, T (.degree. C), satisfying Tf−5 (.degree. C)
Abstract:
A microchip 1 in which a resinous film can be inhibited from sagging into a channel. The microchip 1 comprises: a resinous substrate 2 having a channel groove formed therein; and a resinous film bonded to a surface of the substrate on which the channel groove has been formed. A micro-channel 3 including channels 3A and channels 3B is formed by the channel groove and the resinous film 10. The total length of the channels 3B, which is parallel to the X direction for the resinous substrate 2, is larger than the total length of the channels 3A, which is parallel to the Y direction for the resinous substrate 2. The resinous substrate 2 has been bonded to the resinous film so that the sides parallel to the channels 3B are parallel to the TD direction of the resinous film and that the sides parallel to the channels 3A are parallel to the MD direction of the resinous film.
Abstract:
The present invention relates to a microfluid-system-supporting unit, comprising a fixing layer formed on a substrate, a protective layer or a fixing layer, wherein part of at least one hollow filament in any shape is placed and fixed in the fixing layer. Thus, it provides a microfluid-system-supporting unit lower in surface irregularity even when there are multiple hollow filaments different in external diameter or the hollow filaments crosses each other and resistant to positional deviation of the hollow filament in the crossing regions, and a production method thereof.
Abstract:
A microfluidic device, including a microfluidic network, including: a) two parallel plates each including one or more electrodes, b) at least one channel, arranged between the two plates, made from a material obtained by solidification or hardening of a material of a first fluid, and c) a mechanism varying a physical parameter of the material constituting walls of the channel so as to cause the material to pass at least from the liquid state to the solid state.
Abstract:
Disclosed is a micro-nano fluidic biochip for assaying a biological sample comprising a first substrate, a second substrate and a third substrate which are sequentially stacked from bottom to top, wherein an upper channel assembly disposed on the second substrate is coupled with the lower channel assembly provided on the first substrate, to form a microfluidic channel, and the microfluidic channel has nano interstices formed at both sides thereof, the nano interstices having a height less than that of the center of the channel.
Abstract:
A method for making a polymeric microfluidic structure in which two or more components (layers) of the microfluidic structure are fixedly bonded or laminated with a weak solvent bonding agent, particularly acetonitrile or a mixture of acetonitrile and alcohol. In an aspect, acetonitrile can be used as a weak solvent bonding agent to enclose a microstructure fabricated in or on a non-elastomeric polymer such as polystyrene, polycarbonate, acrylic or other linear polymer to form a three-dimensional microfluidic network. The method involves the steps of wetting at least one of the opposing surfaces of the polymeric substrate components with the weak solvent bonding agent in a given, lower temperature range, adjacently contacting the opposing surfaces, and thermally activating the bonding agent at a higher temperature than the lower temperature range for a given period of time with RF or ultrasonic energy. The contacted polymeric substrates may also be aligned prior to thermal activation and compressed during thermal activation. A laminated, polymeric microfluidic structure is also disclosed.