Abstract:
This specification discloses a composition of a melt blend comprising a continous polyester phase, a cobalt of manganese compound and a first scavenging compound wherein the first scavenging compound comprises at least one allylic group and at least one polar moiety and at least some of the first scavenging compound or the oligomer or the polymer comprising the first scavenging compound is not present in the continuous polyester phase. The partial insolubility is essential for oxygen scavenging and the solubility is essential for reducing haze. The composition is useful in preforms, container walls, and films for packaging.
Abstract:
An oxygen scavenger composition for food packaging application comprising (I) a polymeric resin, (II) one or more oligomeric photosensitizers, (III) a metal salt, preferably Cu stearate or Mn stearate; (IV) a sacrificial oxidizable substrate, and optionally (V) additional components.
Abstract:
This invention relates to polyester compositions useful for the manufacturing containers that minimizes the effect of secondary contamination during filling. More specifically, the present invention relates to a polyester bottle for use in filling of carbonated pasteurized products comprising at least one oxygen scavenging component that limits oxygen ingress to about 1 ppm or less when measured six months after filling, and at least one passive component that limits the carbonation loss to less than about 25 % when measured six months after filing. The present invention also relates to a method of using the polyester bottle to minimize the growth of secondary contaminants in a carbonated pasteurized product.
Abstract:
An oxygen-scavenging component and methods for producing the oxygen- scavenging component are provided. The oxygen- scavenging component, which in preferred embodiments is suitable for use in packaging articles, includes an oxygen- scavenging group preferably having at least one double bond. The oxygen-scavenging component may be combined with a polymer and/or an oxidation catalyst to form an oxygen-scavenging composition.
Abstract:
The present invention relates to methods for making cross-linked, oxidatively stable, and highly crystalline polymeric materials. The invention also provides methods of treating irradiation-cross-linked antioxidant-containing polymers and materials used therewith.
Abstract:
The present invention relates to a composition comprising a colored recycled polyethylene terephthalate (RPET) and an opacifying material. The composition can further comprise a virgin polyethylene terephthalate (PET), a high gas barrier or an oxygen scavenging compound. Suitable opacifying material, suitable high gas barrier polymer and suitable oxygen scavenging compound are disclosed herein. Other embodiments of the present invention include articles produced from these compositions and processes for producing these compositions.
Abstract:
Fire retardant polymer compositions are disclosed. The fire retardant compositions include a polymer and a fire retardant in an amount sufficient to impart fire retardant properties to the polymer composition. The fire retardant can include an oxygen scavenging agent and a synergistic agent for facilitating the conversion of the oxygen scavenging agent into a form suitable for reacting with oxygen. Alternatively, the fire retardant can include an oxygen scavenging agent and a synergistic agent for lowering the melt viscosity of the polymer, or for promoting char formation, or both. Also disclosed are fire retardant products produced using the fire retardant compositions, such as fiberfill materials and bedding materials.
Abstract:
The object of the invention is to provide a polyester composition that actively scavenges oxygen, with or without a transition metal catalyst. This was achieved by using a monomer selected from the group consisting of linear difunctional monomers having the general formula: X - (CH 2 ) n -CH=CH-(CH 2 ) m -X' wherein X and X' are each independently selected from the group consisting of OR and COOR, wherein R is selected from the group consisting of H and alkyl groups with one or more carbon atoms; and n and m are each independently 1 or more. The preferred monomer is 2-butene-l,4-diol (BEDO), and the preferred polyester is the reaction product of this diol with terephthalic acid to form poly(oxy-2-butene-l,4- diyloxycarbonyl-l,4-phenylenecarbonyl) - PBET. Copolymers of PBET are also within the scope of this invention. The polyester oxygen scavenging composition is then blended with conventional container resin such as polyesters, polyamides or polyolefins to make a container.
Abstract:
The present invention is directed to an oxygen scavenger composition comprising a mixture of (i) a polyester polymer composed of polymer segments containing cycloalkenyl group or functionality; and (ii) an ester type polymer selected from (a)a polyester having a high content of alkylene groups; (b) a polylactone; and (c) a polyvinylacetate having at least about 50 weight percent vinyl acetate mer units therein. The present polymer composition has been found to act as an oxygen scavenger agent under both ambient and refrigerated conditions, to be compatible with conventional film forming packaging materials, to provide compositions exhibiting low tack, and to be capable of being readily processed using conventional film forming equipment.