Abstract:
A driving device having a housing tube connected to a stationary base part or a movable structural component part a protective tube connected to the other respective part a spindle drive which has a threaded spindle and a spindle nut arranged on the threaded spindle by which the housing tube and protective tube are movable axially relative to one another, and a rotary drive that drives the spindle drive via a clutch, a rotationally rigid interconnection thereof can be canceled when a determined torque is exceeded. A magnetic ring having a plurality of north and south poles is rotationally arranged near a stationary sensor element. The magnetic ring is arranged at the clutch that is connected to the threaded spindle, fixed with respect to rotation relative to it.
Abstract:
Hinge (1) with one pivoting (2) and one fixed (3) hinge leaf, with a physical hinge axle (7) similar to a hollow cylinder which is common to both hinge leaves (2, 3) with an imaginary mathematical axis (4). The hinge axle (7) is connected unmovably to the pivoting (2) hinge leaf and mounted rotatably on a journal bearing (5-1, 5-2), the body of which journal bearing is connected rigidly with the fixed (3) hinge leaf. In the hinge axle (7) a spiral torsion spring (8) arranged, the first (8-1) of whose two ends is connected unmovably to the hinge axle (7) and the second (8-2) of whose two ends is connected via a worm-gear unit consisting of a worm wheel (9) and endless screw (6) to the journal-bearing body of the journal bearing (5-1). The worm wheel (9) is arranged in the journal bearing (5-1) to rotate around the axis (4) of the hinge axle (7) and is fixed permanently to the second (8-2) of the two ends of the spiral torsion spring (8). The adjustment of the worm wheel (9) and consequently the adjustment of the tension of the spiral torsion spring (8) takes place by turning the endless screw (6) which is arranged in the fixed part of the journal-bearing body of the journal bearing (5-1) and into which the teeth (9-10) of the worm wheel (9) engage.
Abstract:
The present invention relates to an actuator (1), comprising an output member (6); a resilient element (8) connected to said output member (6) so as to urge it in a first direction; and an hydraulic rotation damper (5) with a closed cylinder cavity, a rotational damper shaft which extends into the cylinder cavity, and a piston dividing the cylinder cavity into a first side and a second side. Within the rotation damper (5), the rotational movement of the damper shaft is converted into a translational movement of the piston along a longitudinal axis of the shaft. A restricted fluid passage communicates said first and second sides. The damper shaft is connected over a gearing (10, 15, 17) to the output member (6) and resilient element (8) of the actuator for damping movement of said output member (6) in said first direction.The present invention relates to both rotational and linear actuators as well as to a closing mechanisms for hinged members, such as doors, gates, or windows, comprising such actuators.
Abstract:
A carriage for a vehicle window lifter has a frame with a guide for receiving a guide rail, a carrier plate which is mounted on the frame to be pivotable about a pivot axis perpendicular to the direction of the guide, and an adjusting mechanism that allows the carrier plate to be aligned relative to the frame about the pivot axis. The adjusting mechanism has a tool receptacle which is aligned substantially in the direction of the guide.
Abstract:
The displacement device serves to hold a separation element, which is pivotally connected to a bracket, which is held slideably by a first beam of a scissor assembly and firmly by a second beam of the scissor assembly with a scissor assembly bearing. The scissor assembly bearing comprises a profile body that is adapted to the bracket and can be connected thereto, which profile body comprises a profile part which is connected articulated to the first end element of an adjusting lever, of which the second end element is connected on the one hand pivotally with the second beam and on the other hand is held by an adjusting bolt, of which the threaded shank is rotatably mounted in a threaded channel of the profile body.
Abstract:
A glass supporting assembly for a motor vehicle door with an unframed upper edge is provided with a fixed structure and a frame, which has at least one guide to support and guide a glass and is connectable to the door in such a way as to make it tiltable about a substantially horizontal axis of adjustment; a slot is obtained in a tangential direction in relation to the axis of adjustment in one of either the fixed structure or the frame, and is slidingly engaged by a pin with an axis orthogonal to the tangential direction; the pin is carried by the other of either the fixed structure or the frame, carries a screwed locking nut, and is axially rotatable; the rotational motion of the pin is converted into translational motion by a positioning device to position the pin along the slot.
Abstract:
The present invention provides a control apparatus for automatic sliding doors that can be used with a plurality of door brands and models. The invention includes a control box and an idler pulley mounted to the door header. Both the control box and idler pulley can be mounted on a variety of door models by means of specific header brackets that are configured for each door model. The control box also provides a universal signal interface that can interpret sensor signals from a plurality of door models. A drive belt revolves on the idler pulley and is moved by a motorized pulley controlled by the control box. At least one belt bracket is fastened to the drive belt with a belt clamp, wherein the belt bracket is attached to a sliding door panel. Like the control box and idler pulley, the belt bracket can be used with a variety of door models and is attached to the sliding panel by means of a door bracket that is specific to the door model in question.
Abstract:
An adjusting device (1) may include a base (2), a rotary pin (6) rotatably positioned within the base (2), a latch recess (13) formed in the rotary pin (7), a latch body (12), a spring (10); and, a mounting bracket (7) adapted to pivotably hold and position an associated fitting to the rotary pin (6). The spring (10) urges the latch body (12) into the latch recess (13) and thus urges the rotary pin (6) and the associated fitting into a latched condition.
Abstract:
A power drive assembly for a rear lift gate assembly of a vehicle includes a screw drive having a screw member and a clutch supported by the screw member.
Abstract:
A device for adjusting a window regulator in a vehicle door, having a profiled base element (110) positonable on a lower section of the vehicle door and provided with a first elongate hole (111b) in its lower side and a second elongate hole (111a) in its upper side. A slider (112) slidingly moves within the base element (110) and includes a hole (113) aligned with the first elongate hole (111b). A screw extends through the hole (113) in the slider and the first elongate hole (111b) aligned therewith. A bolt (116) is fixedly attachable to the window regulator extending through the second elongate hole (111a) and includes a threaded rod engaging the threading of screw (114). The screw (114) can be turned from a first position, in which it does not engage the slider (112), to a second position, in which it engages the slider (112) with the first screw end (114b). The device provides for simple compensation of tolerances in connection with the vehicle door and for the window regulator.