Abstract:
A vehicle door is operated in accordance with a desired speed pattern.A vehicle door opening-closing control device 1 includes a power-supply voltage detecting unit 2 that outputs a detection value of a power-supply voltage of an electric motor 13, a reference control pattern storage unit 3 that stores a reference control pattern that indicates a voltage command value or a speed command value for the electric motor 13, the reference control pattern is a control pattern of the electric motor when the detection value is within a predetermined range, a control pattern generating unit 4a that generates a corrected control pattern that is obtained by correcting the reference control pattern based on the detection value, and a PWM control unit 4 that controls the electric motor 13 based on the corrected control pattern.
Abstract:
An oven appliance includes a cabinet that defines a chamber. A pair of doors is rotatably mounted to provide selective access to the chamber of the cabinet. The pair of doors is connected with a linkage assembly such that the doors rotate open and closed simultaneously. The linkage assembly includes a spur gear that engages another gear of the linkage assembly. The spur gear can hinder unwanted rotation of the pair of doors or compress the pair of doors against a seal.
Abstract:
An oven appliance includes a cabinet that defines a chamber. A pair of doors is rotatably mounted to provide selective access to the chamber of the cabinet. The pair of doors is connected with a linkage assembly such that the doors rotate open and closed simultaneously. The linkage assembly includes a spur gear that engages another gear of the linkage assembly. The spur gear can hinder unwanted rotation of the pair of doors or compress the pair of doors against a seal.
Abstract:
A powered garage door opener is provided for operating a garage door between an open and closed position. The powered garage door opener comprises a main housing mounted adjacent the garage door. An electric motor and gear train assembly is mounted within the main housing and coupled to the garage door to drive the garage door between the open and closed positions. A power supply is mounted within the main housing and electrically connected to the electric motor and gear train assembly. A control module is mounted within the main housing and electrically connected to the power supply and the electric motor and gear train assembly for controlling selective actuation of the electric motor and gear train assembly. The electric motor and gear train assembly includes a secondary housing, an electric motor sealed within the secondary housing, a worm gear coupled to and driven by the electric motor, a spur gear in meshed engagement with the worm gear, and a driven shaft mounted to the spur gear and coupled to garage door. The electric motor provides electrical power to drive the worm and spur gears, rotating the driven shaft, to provide power actuation of the garage door and the gear relationship between the worm gear and spur gear allows the spur gear to back drive the worm gear and provide manual actuation of the garage door.
Abstract:
The invention relates to an actuator device for automatically activating the vehicle door (2) of a motor vehicle (1), in particular the tailgate (2), which comprises an electromotive drive (9) and an arrangement of tubular housing parts (7, 8) which can be extended and retracted telescopically by said electromotive drive (9), said electromotive drive comprising an electrical motor (14) and a gearbox (20) driven by the motor (14), characterized in that, the gearbox (20) comprises a wobble mechanism (34, 46, 68, 72).
Abstract:
An oven appliance is provided. The oven appliance includes a cabinet that defines a chamber. A pair of doors is rotatably mounted to provide selective access to the chamber of the cabinet. The pair of doors is connected with a linkage assembly such that the doors rotate open and closed simultaneously. The linkage assembly includes a spur gear that engages another gear of the linkage assembly. The spur gear can hinder unwanted rotation of the pair of doors or compress the pair of doors against a seal.
Abstract:
A winding tool for tightening a torsion spring for a sectional overhead door. The winding tool features two half hub assembles that wrap around an overhead door shaft, wherein a translational sprocket is disposed on the hub assemblies. The hub assemblies connect to the winding cone of a torsion spring via fingers that engage the hub assemblies. A winding box is removably attached to the hub assemblies. The winding box features a worm gear that engages the translational sprocket. A handle bar can be rotated with a drill to cause rotation of the worm gear. Rotation of the worm gear causes rotation of the translational sprocket and ultimate winding of the torsion spring.
Abstract:
An electric door operator for opening and closing one or a spaced pair of transit vehicle passenger doors for being mounted over an opening for the doors. A rotatable input shaft has an electric motor secured to the input shaft for driving the input shaft, a worm centrally positioned on the motor shaft, and an electric brake mounted to the input shaft at an end opposite of the electric motor. A drum cam lifts a pinion from a worm gear disconnecting the worm gear from an output gear train in an emergency.
Abstract:
A linear gate drive assembly with a drive rail connectable to a gate panel. A linear drive portion having a toothed drive surface is coupled to a first drive surface of the drive rail and has teeth thereon with a first rolling tooth profile. A drive wheel is attached to one drive motor and engages the first drive surface to impart an axial drive force on the drive rail. Another drive wheel is attached to another drive motor and engages the second drive surface. The second drive wheel has teeth that mate with the first teeth and that define another rolling tooth profile corresponding to the first rolling tooth profile. Rotation of the second drive wheel imparts axial and normal forces via a rolling teeth interface for moving the drive rail and the gate panel.
Abstract:
A locking mechanism (100) for use with a pneumatic cylinder/differential engine for a power-operated door including a locking rod (20), a plunger (24) associated with the locking rod (20) to cause extension and retraction of the locking rod (20) with respect to a door opening/closing gear (46), and a spring member (34) associated with the plunger (24) for maintaining the plunger (24) and the locking rod (20) in an extended position during a door closed position. An aperture (46a) is located through a sidewall portion of the gear hub (46b) which is capable of receiving an end (20a) of the locking rod (20) when the locking rod is in an extended position to lock the door in a door closed position. The invention also includes an emergency door opening mechanism enabling manual opening of the doors in case of an emergency.