Abstract:
A pump unit is provided which sucks a material having a high viscosity contained in a container and to pump it to a nozzle under pressure. An axial member which performs sucking and pumping of the material is connected with the pump unit. The axial member is axially slidable by the pressure of air supplied to the cylinder. The material which is sucked into the pump unit is discharged from the nozzle by the increase in pressure occurred when the axial member descends. A sensor is provided in the vicinity of the axial member. A result of detection of the sensor is supplied to a controller. A reference speed when constant rate application is performed is presettable in the controller. Correction of pressure is conducted by comparing the actual moving speed of the axial member with the reference speed.
Abstract:
Devices and methods for operating a diaphragm compressor. Embodiments of the present disclosure comprise an oil piston being driven to pressurize work oil against the diaphragm of the compressor. In embodiments, an injection pump provides a supplemental flow of work oil in the region of pressurized fluid, and such pump may be part of an actively controlled system. In embodiments, a pressure relief valve vents an overpump flow of work oil, and such valve may be variable. Embodiments provide feedback and control mechanisms, including control of the injection pump and the relief valve.
Abstract:
Devices and methods for operating a diaphragm compressor system provide high output pressure and high throughput. In some force coupled embodiments, pressures on an actuator piston are balanced by high-pressure recovery or medium-pressure shuffling arrangements. In some embodiments, modular diaphragm compressors are stacked with a clamping mechanism pressing the compressor modules together. In embodiments, multiple stacks are provided as stages of a pressurization process. In embodiments, a main stage valve controls one or more pressure circuits for one or more hydraulic actuators of compressor modules. In embodiments, orifices configured for damping are incorporated to control actuator piston movement within a compressor module.
Abstract:
Devices and methods for operating a diaphragm compressor. Embodiments of the present disclosure comprise an oil piston being driven to pressurize work oil against the diaphragm of the compressor. In embodiments, an injection pump provides a supplemental flow of work oil in the region of pressurized fluid, and such pump may be part of an actively controlled system. In embodiments, a pressure relief valve vents an overpump flow of work oil, and such valve may be variable. Embodiments provide feedback and control mechanisms, including control of the injection pump and the relief valve.
Abstract:
Devices and methods for operating a diaphragm compressor system provide high output pressure and high throughput. In some embodiments, modular diaphragm compressors are stacked with a clamping mechanism pressing the compressor modules together. In embodiments, multiple stacks are provided as stages of a pressurization process. In embodiments, a main stage valve controls one or more pressure circuits for one or more hydraulic actuators of compressor modules. In embodiments, orifices configured for damping are incorporated to control actuator piston movement within a compressor module.
Abstract:
A high pressure pump including a linear actuator having a servo motor to axially rotate a hollow rotor shaft in alternating directions, the servo motor having a stator positioned co-axially around the hollow rotor shaft with an interior of the rotor shaft being co-axially coupled to a drive member to convert axial rotation into reciprocal displacement, the drive member being constrained against linear movement and supporting a shaft. At least one piston is coupled to the shaft and the piston is arranged within a cylinder to define a pumping chamber, whereby alternating rotation of the rotor shaft causes reciprocal linear displacement of the piston to pressurize fluid in the pumping chamber. A drive mechanism includes a controller coupled to a servomotor and an encoder to measure movement of the hollow rotor or output shaft and send a feedback signal proportional to the movement to the controller.
Abstract:
Methods and systems are provided to adaptively control a hydraulic fluid supply to supply a driving fluid for applying a driving force on a piston in a gas compressor, the driving force being cyclically reversed between a first direction and a second direction to cause the piston to reciprocate in strokes. During a first stroke of the piston, a speed of the piston, a temperature of the driving fluid, and a load pressure applied to the piston is monitored. Reversal of the driving force after the first stroke is controlled based on the speed, load pressure, and temperature.
Abstract:
A controller for operating a rod pumping unit at a pump speed. The controller includes a processor configured to operate a pump piston of the rod pumping unit at a first speed. The processor is further configured to determine a pump fillage level for a pump stroke based on a position signal and a load signal. The processor is further configured to reduce the pump speed to a second speed based on the pump fillage level for the pump stroke.
Abstract:
A control method and a system for controlling the piston of a resonant linear compressor including at least one electronic control unit, the electronic control unit including at least one observing electronic circuit and at least one control circuit associated to each other. The observing electronic circuit is configured for: measuring at least one electric magnitude of the electric motor; estimating at least one set of electric parameters and at least one set of mechanical parameters of the resonant linear compressor; and estimating and providing at least one control parameter of the system for the control circuit based on the measured electric magnitude measured and on the estimated set of electric and mechanical parameters. The control circuit is configured for actuating the electric motor from the at least one control parameter.
Abstract:
One or more techniques and/or systems are disclosed for increasing compressed air efficiency in a pump that utilizes an air efficiency device in order to optimize the amount of a compressed air in the pump. The air efficiency device may allow for controlling the operation of the air operated diaphragm pump by reducing the flow of compressed air supplied to the pump as the pump moves between first and second diaphragm positions. A sensor may be used to monitor velocity of the diaphragm assemblies. In turn, full position feedback is possible so that the pump self-adjusts to determine the optimum, or close to optimum, turndown point of the diaphragm assemblies. As such, air savings are achieved by minimizing the amount of required compressed air.