Abstract:
A hydraulic accumulator, comprising a base body (2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i) having a first component (3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i) and a second component (4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i) which are connected to one another by a form fit and/or a material join, is, with the aim of specifying a hydraulic accumulator which, after fabrication without difficulty, exhibits a very reliable seal, a high level of strength, an as far as possible undamaged surface and an as far as possible rotationally symmetrical design in the joining region of the components, characterized in that at least one component (3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i) is deformed by a contactless shaping method in such a way that it enters into the form fit and/or material join with the other component (3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i).
Abstract:
A method produces piston-type accumulators, including an accumulator housing (10) and a separating piston, which can be displaced in a longitudinal direction inside the accumulator housing (10) and separates two working spaces located in the housing. One end face of the accumulator housing is sealed by cover part (20). The cover part (20) is fixed on one side (40) via the free longitudinal edge (32) of the accumulator housing (10). The edge is displaced towards the cover part (20), such that a functionally and positionally secure connection of a cover part is ensured within the housing of a piston-type accumulator without using standard threaded connections.
Abstract:
An open port is provided on an inner peripheral surface of the cylinder bore of the reservoir apparatus and the port is exposed to the exterior of the reservoir apparatus. A hollow portion is formed concentrically with the port on a reservoir body. An annular thin portion is formed between the inner peripheral surface of the cylinder bore and the hollow portion surrounding the port in a radial direction. The thin portion is outwardly deflected and deformed by being pushed outwardly in a radial direction centering on the port in a range narrower than the inner diameter of the hollow portion. Thus, the opening of the port is outwardly sunk from the inner peripheral surface of the cylinder bore thereby to form a curved surface at a root portion of the thin portion on the inner peripheral surface of the cylinder bore.
Abstract:
A pressure storage unit (2) for a camshaft, having an integrated controllable pressure storage device for supporting hydraulic engine components, which includes a housing (4) with a piston (14) mounted movably therein having a piston floor (18), and a spacer element (28) being provided on the piston floor (18).
Abstract:
A hydraulic accumulator, especially a piston accumulator includes an accumulator housing (10) and a separating piston that can be longitudinally displaced in the accumulator housing (10) and divides two working chambers (12) inside the accumulator housing (10). The housing is sealed on each end by one cover part (16). At least one cover part is fixed, on one side (32) by a free longitudinal edge (34) of the accumulator housing (10). The edge is arranged against the cover part (16). By connecting the free longitudinal edge (34) of the accumulator housing (10) to the associated cover part (16) by a peripheral weld seam (46) for sealing at least one working chamber (12) from the environment in a gas-tight and/or fluid-tight manner, a reliable sealing is obtained by the weld seam (46). The weld seam also connects the free longitudinal edge (34) of the accumulator housing (10) to the associated cover part (16).
Abstract:
The invention relates to a hydraulic accumulator, especially a piston accumulator, comprising an accumulator housing (10) and a separating piston that can be longitudinally displaced in the accumulator housing (10) and divides two working chambers (12) inside the accumulator housing (10). The housing is sealed on each end by respectively one cover part (16). At least one cover part is fixed; on one side (32) thereof, by means of a free longitudinal edge (34) of the accumulator housing (10), said edge being arranged against the cover part (16). By connecting the free longitudinal edge (34) of the accumulator housing (10) to the associated cover part (16) by means of a peripheral weld seam (46) for sealing at least one working chamber (12) from the environment in a gas-tight and/or fluid-tight manner, a reliable sealing is obtained by the weld seam (46), said weld seam also connecting the free longitudinal edge (34) of the accumulator housing (10) to the associated cover pant (16).
Abstract:
A pressure container has a steel pipe and an end plate that is formed with a joint portion by allowing its tapered surface to touch a tapered surface of an opening end of the steel pipe so as to block the opening end. The steel pipe has a flange portion which can be cut at the opening end of the steel pipe, and the joint portion is allowed to touch the flange portion. The flange portion is pressed against the opening end along an axial direction so as to touch the end plate, and while the end plate is being pressed against the steel pipe along the axial direction, an electric current is applied so that welding is carried out.
Abstract:
An accumulator (1) capable of suppressing a hydraulic pressure vibrating noise in the range of a sealed gas pressure or below and being reduced in size, wherein an operating member (5) having a bellows (6) is disposed in a housing (2) to partition the inside of the housing (2) into a pressure sealed chamber (8) and a pressure inflow chamber (9) and a fluid inlet (15) for leading pressure fluid from a system side to the pressure inflow chamber (9) is formed in the end wall part (3a) of the housing (2), a chamber forming member (17) is fixed to the inside of the housing (2), and a chamber (18) and a choke (19) are provided between the chamber forming member (17) and the end will part (3a) of the housing (2).
Abstract:
A pressure accumulator has a housing having at least one pressure medium opening, a diaphragm chamber arranged inside the housing and having a side wall which is at least partially deformable, and a pressure medium chamber arranged outside of the diaphragm chamber, the pressure medium chamber at least partially being limited by a partially permeable material which allows an exit of gas from the pressure medium chamber but prevents an exit of a pressure medium from the pressure medium chamber.
Abstract:
An accumulator (1) capable of suppressing a hydraulic pressure vibrating noise in the range of a sealed gas pressure or below and being reduced in size, wherein an operating member (5) having a bellows (6) is disposed in a housing (2) to partition the inside of the housing (2) into a pressure sealed chamber (8) and a pressure inflow chamber (9) and a fluid inlet (15) for leading pressure fluid from a system side to the pressure inflow chamber (9) is formed in the end wall part (3a) of the housing (2), a chamber forming member (17) is fixed to the inside of the housing (2), and a chamber (18) and a choke (19) are provided between the chamber forming member (17) and the end will part (3a) of the housing (2).