Abstract:
Es sind ein Verfahren und eine Vorrichtung zur berührungslosen, emissionsgradunabhängigen Strahlungsmessung der Temperatur T eines natürlichen oder künstlichen Objektes sowie ein Verfahren und eine Vorrichtung zur Bestimmung des Emissionsgrades eines Objektes im Infraroten und/oder Sichtbaren geschaffen, wobei zur Bestimmung des Emissionsgrades in einem (abgeschlossenen, innen schwarzen) Meßgehäuse mit der Temperatur T G e h das Objekt auf eine höhere Temperatur geheizt wird. Zur Temperaturmessung und/oder Emissionsgradmessung wird jeweils eine Strahlungsmessung in zwei oder mehr begrenzten Spektralbereichen durchgeführt, in welchen der Transmissionsgrad der Atmosphäre bzw. der Atmosphäre im Gehäuse zumindest annähernd gleich eins (1) ist. Zur Bestimmung der Temperatur T und/oder des Emissionsgrades ∈ des Objektes gegebenenfalls auch der Temperatur des Gehäuses wird zu den in jeweils einem einzigen Meßgang in den verschiedenen Spektralbereichen gemessenen Intensitäten eine Strahldichtekurve berechnet, die durch die gemessenen Intensitäten verläuft. Dazu wird durch Iterationsrechnung mit Hilfe des Planck'schen Strahlungsgesetzes diese Strahlungsdichtekurve dergestalt berechnet, daß sie die Summe der Strahldichte des Objektes (mit der Temperatur Tobj und dem Emissionsgerad ∈) und der Strahldichte der Umgebung (mit der Temperatur Tumg) bzw. der Strahldichte des Gehäuses (mit der Temperatur TGeh). reflektiert am Objekt (mit dem Reflexionsgrad des Objektes), ist.
Abstract:
PURPOSE:To lower the effect of noise light and to make it possible to measure the emissivity and temperature of a material to be measured on a surface having diffusing property highly accurately, by projecting light on the material to be measured along the normal line, and measuring the projected light and the reflected light along the normal line. CONSTITUTION:The sum K of a known reflectivity rhon and a known emissivity epsilonn of a body in the normal direction is obtained beforehand. by using a reference reflecting plate having the reflectivity rhon=1, the amount of light L0 of a light source 32 is measured. The amount of light L1 from a surface 34 of a material to be measured is measured by a radiometer 40. Then the amount of light L2 from the surface 34 of the material to be measured when the light is not projected is measured by the radiometer 40. In this way, the reflectivity rhon of the surface 34 of the material to be measured 30 in the normal direction is obtained by an expression rhon=(L1-L2)/L0. by subtracting the obtained rhon from the sum K, the emissivity epsilonn can be obtained. Based on a luminance temperature obtained from the amount of light L2 and the emissivity epsilonn, the accurate temperature T of the material to be measured 30 can be found based on Ta=A.epsilonn.T (where A is a proportional constant).
Abstract:
PURPOSE:To measure with a high accuracy the temp. distribution on the wide range of a semi-transparent measuring body with a simple constitution by finding an emissivity with the use of two radiation sources and scanning type radiation thermometer, then by measuring the temp. CONSTITUTION:A scanning type radiation thermometer 2 scans the width direction of a film like semi-transparent measuring body 1 and detects the radiant energy emitted from the measuring body 1. The first and the second radiation sources 31, 32 are located at both sides with sandwiching the measuring body 1 on the scanning line of the thermometer 2 and radiates a radiant energy on the scanning zone of the thermometer 2. An arithmetic means 4 performs the prescribed operation with the output signal being supplied from the thermometer 2. The emissivity of the measuring body is found and the temp. is operated based on 1st detection value of the time when the radiant energy emitted from the measuring body 1 is made incident, the second detection value of the time when the radiant energy emitted from 1st radiation source 31 is made incident with being reflected on the measuring body 1 and the third detection value of the time when the radiant energy emitted from the second radiation source 32 is made incident with penetrating the measuring body.
Abstract:
PURPOSE:To easily measure the emissivity and temperature of an object body by calculating the emissivity on the basis of the relation between a difference between a detected value when radiant energy is incident and a detected value when not and the emissivity of the object body, and calculating the temperature from it. CONSTITUTION:A scan type radiation thermometer 2 which scans the object body 1 to detect radiant energy from it and radiation sources 31 and 32 which radiates radiant energy to the object body 1 in the scanning area of the thermometer 2 are provided. Then, a coefficient of correction as the ratio of the difference between the detected value when the radiant energy from the radiation sources 31 and 32 which is reflected by the object body 1 is incident on the thermometer 2 and that when not and a value regarding the temperature of the radiation sources is in specific relation with the emissivity of the object body 1, so the emissivity is calculated from it, and an arithmetic means 6 calculates the temperature of the object body 1. Consequently, a correct temperature distribution after the emissivity of the object body 1 is corrected is measured through the simple constitution.
Abstract in simplified Chinese:本发明提供在一个结构中的万用表和设备之组合,其中该设备带有可决定在距离表面一定距离观察之辐射非接触测量的设备。此结构进一步包括透过直接接触确定表面该温度的设备。此非接触设备可带有光学观察设备和激光观察设备,和可确定表面发射率之设备。可设置记录设备,如数字记录器。语音输出可被设置以对应于确定之温度,同时此语音输出包括综合语音输出。方便的是,此设备可适于手持,例如手枪柄,和/或在三脚架上固定。分别由远红外辐射和直接接触得到之温度被分别显示。此万用表和温度结构具有透过语音命令控制之设备。
Abstract in simplified Chinese:本发明之实施例大致上关于用以测量及监控基板之温度之设备及方法,该基板上具有三维(3D)特征结构。设备包含光源、聚焦透镜及辐射率计,该光源用以照射基板,该基板上具有3D特征结构,该聚焦透镜用以聚集且聚焦反射光,该辐射率计用以侦测该聚焦反射光之辐射率。设备亦包含光束分光器及成像设备。成像设备提供反射光之绕射图案之放大影像。方法包含以光照射基板,该基板上具有3D特征结构,且以聚焦透镜聚焦反射光。然后聚焦光导向传感器且测量基板之辐射率。反射光亦入射成像设备,以产生反射光之绕射图案之放大影像。