Abstract:
A mask inspection device and method thereof are provided. In the mask inspection device, an image capturing module is controlled to capture an image of the object to be inspected, and when the captured image does not match a predetermined correction image, a horizontal position of the bearing module which holds the object is adjusted; when the captured image matches the predetermined correction image, a light emission element projects a spot light towards the object, and the image capturing module captures an image in a mask region of the object, so as to produce a mask inspection image. The mask inspection information can be obtained from a two-dimensional image of the mask inspection image, and an abnormal image of the mask inspection image is inspected to generate mask abnormal information.
Abstract:
Apparatus is provided featuring a signal processor or signal processing module configured to receive signaling containing information about images of an ore sample; and determine information about a Bitumen Content of the ore sample based at least partly on the signaling, including for use in real time ore blend management in a bitumen recovery process related to mined oil sands. The ore sample may be an ore face, and the signaling may contain information about the images of the ore face. The signal processor or signal processing module may be configured to determine a real time ore face ore grade visualization based at least partly on the signaling, and provide corresponding signaling containing information about the real time ore face ore grade visualization, including a composite overlay image.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
Method includes positioning a first carrier assembly on a system stage. The carrier assembly includes a support frame having an inner frame edge that defines a window of the support frame. The first carrier assembly includes a first substrate that is positioned within the window and surrounded by the inner frame edge. The first substrate has a sample thereon. The method includes detecting optical signals from the sample of the first substrate. The method also includes replacing the first carrier assembly on the system stage with a second carrier assembly on the system stage. The second carrier assembly includes the support frame and an adapter plate held by the support frame. The second carrier assembly has a second substrate held by the adapter plate that has a sample thereon. The method also includes detecting optical signals from the sample of the second substrate
Abstract:
An automatic observation apparatus for detecting mineral samples comprises a base (1), a supporting arm (2), a sample fixing device (3), a stepper motor (4), a high-definition camera (5) and a control system (6). A refractometer is fixed on the base (1). A vertical through hole is formed at the top end of the supporting arm (2), and a lifting rod (211) penetrates through the vertical through hole and is matched with the vertical through hole in shape. A cavity is formed at the top end of the supporting arm (2), a gear (216) is mounted in the cavity, and the gear (216) is meshed with a rack (215) of the lifting rod (211). The sample fixing device (3) is a right-hexagonal-prism shell with the top end sealed, a spring (312) is arranged in a vertical hole of the sample fixing device, a sample locating head fixing device (314) is arranged at the lower end of the spring (312), a blind hole is formed in the lower end of the sample locating head fixing device (314), and a sample locating head (316) is matched with the blind hole in the lower end of the sample locating head fixing device (314). The apparatus can conveniently and efficiently fix samples, stray light interference is avoided, mineral samples can be rotated to be observed from different angles, and mineral sample detection accuracy is improved.
Abstract:
The invention relates to optoelectronic systems for detecting one or more target particles. The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
Abstract:
The present invention provides a light beam measuring instrument that can securely receive light reflected by a sample. The light beam measuring instrument 1 includes an optical axis tilting mechanism 13 that includes a first tilting mechanism 131 and a second tilting mechanism 132. From the optical axis A1 of irradiation light beam emitted from a light beam source 112, the first tilting mechanism 131 tilts the optical axis A1 about the first tilting axis T1. The second tilting mechanism 132 tilts the optical axis A1 about the second tilting axis T2. The light beam measuring instrument 1 can receive the light reflected by the semiconductor chip C by means of operation of the optical axis tilting mechanism 13 even if the light reflected by the semiconductor chip C is tilted. Accordingly, this apparatus can securely perform measurement or inspection using the light beam.
Abstract:
An analyzer including a housing with a mutually adjacent first side and a second side, and an annular reagent holding part disposed within the housing is disclosed. An immunoassay method for measuring antigen or antibody of a measurement object contained in a sample and performed by the analyzer is also disclosed.
Abstract:
A wafer table structure providing a single wafer table surface suitable for handling both wafers and film frames includes a base tray having a set of compartments formed therein by way of a set of ridges formed in or on an interior base tray surface; a hardenable fluid permeable compartment material disposed within the set of base tray compartments; and a set of openings formed in the base tray interior surface by which the hardened compartment material is exposable to negative or positive pressures. The base tray includes a first ceramic material (e.g., porcelain), and the hardenable compartment material includes a second ceramic material. The base tray and the compartment material are simultaneously machinable by way of a standard machining process to thereby planarize exposed outer surfaces of the base tray and the hardened compartment material at an essentially identical rate for forming a highly or ultra-planar wafer table surface.
Abstract:
The invention relates to an inspection and repair module for an internal side wall of a vertically erected structure, with the module including a carrier for supporting at least one data recording mechanism and being securable to a hoist, and for an inspection and repair module for an internal wall of a conduit with the module including propulsion means comprising a set of driven tracked wheels controllable by a controller carried by the carrier and configured to provide, within a conduit, longitudinal forward and reverse motion.