Abstract:
Apparatus and methods are disclosed for the detection and imaging of ultrasonic contrast agents. Ultrasonic apparatus is provided for coherent imaging of ultrasonic contrast agents, and for detecting harmonic contrast agents. The inventive apparatus includes a dual display for simultaneously viewing a real time image which displays the location of the contrast agent and a triggered contrast image. Methods of contrast agent detection and imaging include the measurement of perfusion rate characteristics, multizone contrast imaging, multifrequency contrast imaging, tissue perfusion display, high PRF contrast image artifact elimination, and alternate polarity acquisition of nonlinear contrast effects.
Abstract:
An ultrasonic diagnostic imaging system is provided by which an ultrasonic image and Doppler flow information are simultaneously displayed from echo acquisition sequences alternating between image signal acquisition and Doppler signal acquisition. To continuously display Doppler information during the intervals that images signal acquisition is occurring, these gaps in Doppler signal acquisition are filled by signals derived from the Doppler signals received prior to and succeeding the gaps. The Doppler signals received prior to the gap are used to produce spectrally continuous signals extending over the initial portion of the gap. The Doppler signals received following the gap are used to produce spectrally continuous signals extending over the final portion of the gap. A gapsize calculator is responsive to variations in system scanning parameters to set the durations of the successive image and Doppler signal acquisition intervals to obtain optimal frame rates of display.
Abstract:
A technique for scanning an image field with adjacent beams of ultrasonic energy is provided in which initially transmitted beams are transmitted along beam directions down the center of the image field. Subsequent beams are alternately transmitted on either side of the initially transmitted beams and at increasing lateral locations in said field with respect to the locations of the initially transmitted beams until the full image field has been scanned. In one alternative embodiment initially transmitted beams are transmitted along beam directions at the lateral sides of the image field. Subsequent beams are alternately transmitted on either side of the initially transmitted beams and at lateral locations which converge toward the center of the image field until the full image field has been scanned. In another alternative embodiment initially transmitted beams are transmitted on one side of the center of the image field, subsequent beams diverge from the locations of the initially transmitted beams, and concluding beams laterally converge at a location on the other side of the center of the image field.
Abstract:
A velocity estimation technique is provided for a pulse-echo ultrasonic diagnostic system in which a two dimensional array of samples is acquired from a sample volume. The two dimensions of the array are depth, in which echo signal samples are acquired in response to transmission of a pulse to the sample volume, and pulse time, in which samples are acquired in response to transmission of the pulses in the pulse ensemble to the sample volume. Two autocorrelation calculations are performed on the array, one in the depth dimension and another in the pulse time dimension to yield two correlation functions, the first related to echo frequency and the second related to the Doppler frequency. The two correlation functions are then employed in a Doppler velocity estimation to determine the velocity of motion at the sample volume. The technique utilizes the full information content present in the bandwidth of the received echo signals, thereby overcoming inaccuracies due to depth dependent frequency decline or coherent signal cancellation. Since accuracy is premised upon the number of samples in the array and not its size in a particular dimension, performance can be tailored to favor frame rate or axial resolution while maintaining the accuracy of velocity estimation.
Abstract:
An ultrasonic imaging system is disclosed which produces a sequence of images of planes of a subject including both image and spatial positional information of the image plane. In one embodiment the positional information is developed from a plurality of accelerometers located within a scanhead. The second integrals of the acceleration signals are used to determine positional information of the image plane. In a second embodiment a tranmitter transmits a magnetic field and a receiver attached to the scanhead detects the position of the scanhead in relation to the transmitted magnetic field. Spatially related images are displayed by displaying one image plane in the plane of the display and a second image plane projected in relation thereto. Either of the displayed planes may be displayed in outline form, and the outline may be modulated to depict depth.
Abstract:
An intraoperative ultrasonic transducer probe is described comprising a handle section (20) and a transducer section (22) which resemble a tiny leg and foot. The two sections are obtusely angled relative to each other so that the physician may continue to clearly view the surgical site while holding and manipulating the probe. The extension of the transducer section away from its point of attachment to the handle section results in the toe (18) of the foot being insertable under unincised tissue, enabling the surgeon to ultrasonically examine organs and tissue peripheral to the surgical site and to follow a vessel even beyond the incision. The transducer section is completely encapsulated in a rubberlike material (44) which electrically insulates the transducer from the patient, enables the probe to be easily sterilized, and further provides an inherent standoff between the transducer and the contact surface of the probe. Thus, the transducer can be focused immediately at the skin line of the organ or vessel which is in contact with the probe. The probe can be easily assembled by providing termination assemblies for attaching coaxial cable conductors to the printed circuit board assembly of the probe.
Abstract:
Subtle changes in heart wall motion which may be symptomatic of coronary disease states are more easily discerned by acquiring a real time sequence of ultrasonic diagnostic images. An image acquired at a predetermined point in the cardiac cycle, such as the end diastole image, is chosen as a mask image, and the heart wall in the mask image is colored a first color. The heart wall in the remaining images in the sequence is colored a second, contrasting color. The contrasting images are then successively displayed in overlapping alignment with a static display of the mask image. Abnormalities in heart wall motion are more easily discerned by the relative motion between the contrasting image sequence and the mask image.
Abstract:
An acoustic standoff is provided for an ultrasonic scanhead which readily attaches to and detaches from an ultrasonic scanhead. The standoff includes a retention clip which snaps onto the scanhead and defines a volumetric region in front of the scanhead acoustic window. A body of acoustically transmissive material which is preferably disposable is located in the volumetric region. This integral configuration of scanhead and disposable standoff material advantageously allows a clinician to manipulate both the scanhead and its standoff with one hand during performance of an ultrasonic examination. Also disclosed is a convenient kit for the retention clip and disposable blocks of standoff material which enables standoff material of the proper dimensions and acoustic characteristics for the clip to be cast and formed directly in compartments of the kit.
Abstract:
The present invention is a multiline beamformer for use in a medical ultrasound scasnner using a phased array transducer. Lines of ultrasound energy are generated having a pressure at the array aperture corresponding to sin(πx)/πx, where x is the normalized distance of the array element measured from the center of the array. This transmitted energy creates a flat field in space which can then be received in multiple receive lines, using bundled, parallel time delays.
Abstract translation:本发明是一种用于使用相控阵变换器的医用超声波扫描仪中的多束波束形成器。 产生具有对应于sin(pi x)/ pi x的阵列孔径处的压力的超声能量线,其中x是从阵列的中心测量的阵列元件的归一化距离。 这种传输的能量在空间中产生平坦的场,然后可以使用捆绑的并行时间延迟在多个接收线中接收。