Abstract:
An ultrasonic diagnostic system for measuring fluid flow velocities through Doppler techniques is provided which eliminates the effects of tissue motion from fluid flow velocity information. Doppler information signals are discriminated to determine the presence of signal components resulting from moving tissue, which signal components are located at frequencies of a Doppler spectrum other than the predetermined frequency location of stationary tissue signals. The tissue motion signal components present are shifted to the predetermined frequency location and removed by high pass filtering the Doppler signals. The remaining signals are then shifted back to their original frequency location and transmitted to a Doppler velocity estimator for further processing of the fluid flow velocity information and ultimate display of the information. To overcome problems of Doppler frequency inaccuracies at discrete spatial positions, the Doppler signals from a plurality of neighbouring spatial locations are examined in the aggregate to determine the frequency location of tissue motion signal components.
Abstract:
A system for imaging a biopsy needle with ultrasound is shown in which the needle tip elicits a Doppler response through controlled reciprocation of the needle tip. In a preferred embodiment the biopsy needle includes a hollow cannula (40) which carries a removable stylet. Means for reciprocating (44) the stylet is coupled to the proximal end of the stylet, and the distal tip of the stylet is reciprocated at the distal end of the cannula. This motion is detected through Doppler interrogation of the body region at which the biopsy is to be performed, and the Doppler response of the needle tip in the image of the body region allows the needle tip to be monitored as it approaches the tissue to be biopsied.
Abstract:
A velocity estimation technique is provided for a pulse-echo ultrasonic diagnostic system in which a two dimensional array of samples is acquired from a sample volume. The two dimensions of the array are depth, in which echo signal samples are acquired in response to transmission of a pulse to the sample volume, and pulse time, in which samples are acquired in response to transmission of the pulses in the pulse ensemble to the sample volume. Two autocorrelation calculations are performed on the array, one in the depth dimension and another in the pulse time dimension to yield two correlation functions, the first related to echo frequency and the second related to the Doppler frequency. The two correlation functions are then employed in a Doppler velocity estimation to determine the velocity of motion at the sample volume. The technique utilizes the full information content present in the bandwidth of the received echo signals, thereby overcoming inaccuracies due to depth dependent frequency decline or coherent signal cancellation. Since accuracy is premised upon the number of samples in the array and not its size in a particular dimension, performance can be tailored to favor frame rate or axial resolution while maintaining the accuracy of velocity estimation.
Abstract:
An ultrasonic diagnostic system is provided which detects the presence of coated microbubble contrast agents in the body of a patient by transmitting ultrasonic energy which causes the destruction of the coated microbubbles and detects the microbubble destruction through phase insensitive detection and differentiation of echoes received from two consecutive ultrasonic transmissions. The destruction of a microbubble can also be used as a point source of acoustic energy for aberration correction, whereby the timing of the beamformer is adjusted from an analysis of beamformer signals resulting from a detected microbubble destruction event.
Abstract:
A velocity estimation technique is provided for a pulse-echo ultrasonic diagnostic system in which a two dimensional array of samples is acquired from a sample volume. The two dimensions of the array are depth, in which echo signal samples are acquired in response to transmission of a pulse to the sample volume, and pulse time, in which samples are acquired in response to transmission of the pulses in the pulse ensemble to the sample volume. Two autocorrelation calculations are performed on the array, one in the depth dimension and another in the pulse time dimension to yield two correlation functions, the first related to echo frequency and the second related to the Doppler frequency. The two correlation functions are then employed in a Doppler velocity estimation to determine the velocity of motion at the sample volume. The technique utilizes the full information content present in the bandwidth of the received echo signals, thereby overcoming inaccuracies due to depth dependent frequency decline or coherent signal cancellation. Since accuracy is premised upon the number of samples in the array and not its size in a particular dimension, performance can be tailored to favor frame rate or axial resolution while maintaining the accuracy of velocity estimation.