Abstract:
The present invention is directed to a process for the preparation of a metal powder having a purity at least as high as the starting powder and having an oxygen content of 10 ppm or less comprising heating said metal powder containing oxygen in the form of an oxide, with the total oxygen content being from 50 to 3000 ppmf in an inert atmosphere at a pressure of from 1 bar to 10 -7 to a temperature at which the oxide of the metal powder becomes thermodynamically unstable and removing the resulting oxygen via volatilization. The metal powder is preferably selected from the group consisting of tantalum, niobium, molybdenum, hafnium, zirconium, titanium, vanadium, rhenium and tungsten. The invention also relates to the powders produced by the process and the use of such powders in a cold spray process.
Abstract:
A method of producing a refractory metal powder by (A) combining (i) an oxide particle component and (ii) a reducing agent; (B) forming a substantially uniform mixture of (i) and (ii); (C) continuously feeding the mixture into a furnace; (D) igniting the mixture at a reaction zone and starting a reaction that is sufficiently exothermic to form a high temperature flash; (E) starting a reaction that is sufficiently exothermic to form a high temperature self-sustaining flash; and (F) producing a free-flowing reduced oxide powder.
Abstract:
The invention relates to a process for making a cross-directionally worked molybdenum plate, the process comprising: (a) reducing ammonium molybdate and forming molybdenum metal powder; (b) consolidating a molybdenum component comprised of molybdenum metal powder and an alloying element to a first workpiece, the alloying element being selected from the group consisting of titanium, zirconium, hafnium, carbon, lanthanum oxide, and combinations thereof; (c) thermally treating the first workpiece and subjecting the workpiece to thermo-mechanical forces in a first direction, and thereby forming a second workpiece; (d) thermally treating the second workpiece and subjecting the second workpiece to thermo-mechanical forces in a second direction that is different from the first direction; (e) subjecting the thermomechanically treated second workpiece to a recrystallization heat treatment step, and thereby forming a heat-treated cross-directionally worked workpiece; and (f) subjecting the heat-treated, cross-directionally worked workpiece to a slicing step or a machining step, and thereby forming the crossdirectionally worked molybdenum plate. The invention also relates to X-ray targets made from the process.
Abstract:
The invention relates to a method that involves (a) removing graphite from at least one surface of a metal graphite composite material; (b) chemically cleaning or plasma etching the surface of the metal graphite composite material; (c) applying a metal-containing material to the surface of the chemically cleaned or plasma etched metal graphite composite material, and thereby forming an intermediate layer; (d) applying a metal coating on the intermediate layer, and thereby forming a composite material. The invention also relates to a composite material comprising (a) a metal graphite composite substrate having at least one surface that is substantially free of graphite; (b) a metal-containing intermediate layer located on a surface of the substrate; and (c) a metal coating on the intermediate layer.
Abstract:
Tantalum anode pellets or tantalum powders are treated to remove carbon content (mostly attributable to binders used in pressing the powders to pellet form and/or sintering of the pellets) by an aqueous leach at 50-200 DEG F in lieu of the conventional complex distillation/decomposition methods.
Abstract:
A sputtering target that includes at least two consolidated blocks, each block including an alloy including molybdenum in an amount greater than about 30 percent by weight and at least one additional alloying ingredient; and a joint between the at least two consolidated blocks, the joint being free of any microstructure due to an added bonding agent (e.g., powder, foil or otherwise), and being essentially free of any visible joint line the target that is greater than about 200 μm width (e.g., less than about 50 μm width). A process for making the target includes hot isostatically pressing, below a temperature of 1080° C., consolidated perform blocks that may be surface prepared (e.g., roughened to a predetermined roughness value) prior to pressing.
Abstract:
In various embodiments, electronic devices such as thin-film transistors and/or touch-panel displays incorporate bilayer capping layers and/or barrier layers.
Abstract:
The invention is directed at sputter targets including 50 atomic % or more molybdenum, a second metal element of titanium, and a third metal element of chromium or tantalum, and deposited films prepared by the sputter targets. In a preferred aspect of the invention, the sputter target includes a phase that is rich in molybdenum, a phase that is rich in titanium, and a phase that is rich in the third metal element.
Abstract:
A method for making a sputtering target including steps of encapsulating and hot isostatically pressing at least one mass of metal powder (e.g., tantalum), having a particle size ranging from about 10 to about 1000 μm, with at least about 10 percent by weight of particles having a particle size greater than about 150 μm (for example, about 29 to about 56 percent (e.g., about 35 to about 47 percent) by weight of the particles in the at least one mass of metal powder having a particle size that is larger than 150 microns, but below about 250 μm), for defining at least a portion of a sputtering target body, having an essentially theoretical random and substantially uniform crystallographic texture.
Abstract:
The invention relates to sputter targets and methods for depositing a layer from a sputter target. The method preferably includes the steps of: placing a sputter target in a vacuum chamber; placing a substrate having a substrate surface in the vacuum chamber; reducing the pressure in the vacuum chamber to about 100 Torr or less; removing atoms from the surface of the sputter target while the sputter target is in the vacuum chamber (e.g., using a magnetic field and/or an electric field). The deposited layer preferably is a molybdenum containing alloy including about 50 atomic percent or more molybdenum, 0.5 to 45 atomic percent of a second metal element selected from the group consisting of niobium and vanadium; and 0.5 to 45 atomic percent of a third metal element selected from the group consisting of tantalum, chromium, vanadium, niobium, and titanium.