Abstract:
Methods, assays, compositions and kits for the ligation of short polynucleotides are presented herein. The short polynucleotides are optionally no more than 7 nucleotides in length, and can be as short as 3 or 4 nucleotides in length. The ligation is optionally performed by CV ligase.
Abstract:
Disclosed herein are methods for identifying rare cells containing particular markers and/or alleles from biological samples that have not been substantially pre-processed (e.g., unprocessed whole blood). The methods described herein provide a system for digital enrichment of target cells from a biological sample and detection of such target cells, thereby allowing accurate and efficient detection and / or enumeration of such cells in the sample.
Abstract:
Systems and methods are used to display cell structures of a biological cell. A plurality of cell structures of a biological cell is stored and for each cell structure of the plurality of cell structures one or more stain colors are stored. A selected cell structure is received from an input device. One or more stain colors of the selected cell structure are retrieved. The one or more stain colors of the selected cell structure are displayed. A selected stain color is received from the input device. The selected cell structure is displayed in the selected stain color in an exemplary cell image. Further, a three-dimensional image of a biological cell is stored. The three-dimensional image is displayed on a display that includes a touch screen. A movement selection is received from the touch screen. The three-dimensional image is displayed on the display according to the movement selection.
Abstract:
A proximity binding assay (PBA) is performed on at least one test sample, at least one reference sample, a background sample, and one or more calibration samples using a thermal cycler instrument. Ct values are determined for at least one set of test sample data and at least one set of reference sample data. Background corrected Ct values are calculated using a corresponding value in a background sample data set. A linear range is determined for the background corrected Ct values as a function of sample quantity. A linear regression line is calculated for each linear range. One or more parameter values of an exponential model (EM) fold change formula are estimated from the one or more sets of calibration sample data. A target protein quantity and associated confidence interval are calculated using the linear regression lines and the EM fold change formula.
Abstract:
Biotin derivatives, methods of using the biotin derivatives and kits comprising the biotin derivatives. In some embodiments, the biotin derivatives can be separated from streptavidin under less harsh conditions than are required for biotin. Accordingly, in some embodiments, the biotin derivatives are better suited for applications in which it would be desirable to dissociate the biotin derivative from streptavidin under less harsh conditions, such as to maintain the structural integrity and/or viability of the moiety attached to the biotin derivative.
Abstract:
A method for preparing a nucleic acid sample for nucleic acid sequencing includes amplifying a nucleic acid target sequence using a primer bound to a first capture substrate; capturing an amplified nucleic acid product by the first capture substrate; generating at least one sequencing ladder from the amplified nucleic acid product using at least one sequencing primer; capturing the at least one sequencing ladder by hybridizing the at least one sequencing ladder to a complementary capture compound on a second capture substrate; and removing the at least one sequencing ladder from the second capture substrate. The first and/or second capture substrate may include a magnetic particle. Other methods, workflows, kits, and computer program media for nucleic acid sample preparation are also disclosed.
Abstract:
A system for preparing biological sample contains a body including a proximal side and a distal side, a plurality of mandrels, a plurality of resilient elements, a plurality of fluid dispensers, and one or more samples. The mandrels are moveably positioned within the body, where each resilient element engages a respective one of the mandrels. Each of the fluid dispensers is configured to engage a distal end of a corresponding one of the mandrels. Each sample comprises a solution containing one or more nucleic acid sequences contained within at least one of the fluid dispensers.
Abstract:
The described embodiments may provide a chemical detection circuit with an improved signal-to-noise ration. The chemical detection circuit may include a current source, a chemical detection pixel, an amplifier and a capacitor. The chemical detection pixel may comprise a chemical-sensitive transistor that may have a first and second terminals and a row-select switch coupled between the current source and chemically- sensitive transistor. The amplifier may have a first input and a second input, with the first input coupled to an output of the chemically-sensitive transistor via a switch and the second input coupled to an offset voltage line. The capacitor may be coupled between an output of the amplifier and the first input of the amplifier. The capacitor and amplifier may form an integrator and may be shared by a column of chemical detection pixels.
Abstract:
The present invention is directed to compositions, methods and kits useful for the synthesis of nucleic acid molecules. More specifically, compositions, methods and kits are provided for the amplification of nucleic acid molecules in a one-step RT-PCR procedure comprising one or more agents used to increase tolerance to PCR inhibitors.