Abstract:
Disclosed herein is an ambient light sensor formed by a substrate, and an inner central area defined on the substrate, and a concentric polygonal shape defined on the substrate about the inner central area. The concentric polygonal shape is defined by concentric polygonal isolation regions and spoke shaped isolation regions extending through respective corners of the concentric polygonal isolation regions to the inner central area to thereby divide the concentric polygonal shape into a plurality of concentric polygonal regions, with each of the plurality of concentric polygonal regions divided into a plurality of trapezoidal sections. A plurality of photodiodes ae formed on the substrate such that each of the plurality of trapezoidal sections contains at least one photodiode. A color filter is applied to the plurality of trapezoidal sections and their respective photodiodes to thereby form a plurality of color channels.
Abstract:
A controller chip includes processing circuitry configured to process received samples by estimating trend functions from the samples, subtracting the trend functions from the samples to produce de-trended samples, performing a mathematical transform on the de-trended samples to produce frequency bins. The frequency bins may correspond to unwanted resonance movement of a movable mirror associated with the received samples. The processing circuit further generates an error function from the frequency bins. The error function can be used to generate correction signals for the movable mirror that serve to minimize the error function.
Abstract:
A controller chip includes processing circuitry configured to process received samples by estimating trend functions from the samples, subtracting the trend functions from the samples to produce de-trended samples, performing a mathematical transform on the de-trended samples to produce frequency bins. The frequency bins may correspond to unwanted resonance movement of a movable mirror associated with the received samples. The processing circuit further generates an error function from the frequency bins. The error function can be used to generate correction signals for the movable mirror that serve to minimize the error function.
Abstract:
Mirror control circuitry described herein is for controlling a first micro-mirror of a micro-mirror apparatus that scans across a target area in a scan pattern. The mirror control circuitry includes a processor that determines a mechanical angle of the first micro-mirror for a given instant in time during scanning of the first micro-mirror between upper and lower rotational limits, the mechanical angle being such to maintain the scan pattern as being uniform while the micro-mirror apparatus scans across the target area between the upper and lower rotational limits. The processor also generates a driving signal for the first micro-mirror as a function of the determined mechanical angle for the first micro-mirror at the given instant in time.
Abstract:
Disclosed herein is a control circuit for a movable mirror. The control circuit includes driving circuitry configured to drive the movable mirror with a drive signal to effectuate oscillating of the movable mirror, opening angle determination circuitry configured to determine an opening angle of the movable mirror, and amplitude control circuitry. The amplitude control circuitry is configured to a) first cause the driving circuitry to generate the drive signal as having an upper threshold drive amplitude, and b) then later cause the driving circuitry to generate the drive signal as having a nominal drive amplitude, as a function of the opening angle of the movable mirror being equal to a desired opening angle.
Abstract:
Disclosed herein is a circuit for determining failure of a movable MEMS mirror. The circuit includes an integrator receiving an opening angle signal representing an opening angle of the movable MEMS mirror, and a differentiator receiving the opening angle signal. A summing circuit is configured to sum the integrator output and the differentiator output. A comparison circuit is configured to determine whether the sum of the integrator output and differentiator output is not within a threshold window. An indicator circuit is configured to generate an indicator signal indicating that the movable MEMS mirror has failed based on the comparison circuit indicating that the sum of the integrator output and differentiator output is not within the threshold window.
Abstract:
A process for assembly of an integrated device, envisages: providing a first body of semiconductor material integrating at least one electronic circuit and having a top surface; providing a second body of semiconductor material integrating at least one microelectromechanical structure and having a bottom surface; and stacking the second body on the first body with the interposition, between the top surface of the first body and the bottom surface of the second body, of an elastic spacer material. Prior to the stacking step, the step is envisaged of providing, in an integrated manner, at the top surface of the first body a confinement and spacing structure that confines inside it the elastic spacer material and supports the second body at a distance from the first body during the stacking step.
Abstract:
A logarithmic pixel is formed by a photodiode connected to a semiconductor device that is operating based upon a sub-threshold. A logarithmic output is taken from an output node connected to the pixel via an amplifier. To calibrate the pixel, the photodiode is isolated by a switch and a ramp voltage is applied as reference voltage to the amplifier. The ramp voltage acts across the constant internal capacitance of the pixel to produce in-pixel a constant current for calibration purposes.
Abstract:
A method for attaching a sensor and a housing to opposite sides of a mounting substrate is provided. The sensor has a sensing face that includes a sensing area and at least one signal output contact thereon. The mounting substrate has a circuitry face and at least one signal input contact thereon. The mounting substrate also has an opening therethrough. The method includes positioning the sensing area over the opening so that the at least one signal output contact of the sensor makes contact with the at least one signal input contact of the mounting substrate. The mounting substrate receives the housing so that the housing and the sensor are in alignment.
Abstract:
A chip includes CPU (12), memories (13,14) for programs and data, peripheral units (18,19) for interacting with the outside world, and an internal RC oscillator (17) for providing clock signals. One of the peripheral units (18) includes a timer counter incremented at a frequency derived from the RC oscillator. The method does not try to change the frequency of the RC oscillator. Instead, an external calibration source (21) is connected to a capture input of the timer unit to provide a signal having a reference frequency, e.g. the mains frequency. The counter is sampled on active edges of that signal, and the sampled values are processed to derive a calibration ratio. After these calibration steps, a software correction is applied to parameters handled by programs stored in memory based on the calibration ratio to compensate for frequency variations of the RC oscillator.