-
公开(公告)号:CN113070488A
公开(公告)日:2021-07-06
申请号:CN202110321095.7
申请日:2021-03-25
Applicant: 哈尔滨工业大学 , 安徽哈特三维科技有限公司 , 安徽省春谷3D打印智能装备产业技术研究院有限公司
IPC: B22F10/28 , B22F10/64 , B22F10/66 , B22F10/366 , B22F10/36 , B22F10/31 , C22C38/08 , C22C38/02 , C22C38/04 , C22C38/06 , C22C38/10 , C22C38/12 , C22C38/14 , C22C38/44 , C22C38/50 , C22C38/52 , B33Y10/00 , B33Y40/10 , B33Y40/20 , B33Y70/00
Abstract: 一种提高马氏体时效钢强度和塑性的3D打印工艺方法,涉及一种通过增材制造方式提高马氏体钢强度和塑性的方法。准备原材料粉末;真空干燥,流动性测试;设定铺粉层厚度,改变激光功率和扫描速度进行单道成型试验,选出熔化道连续且无球化现象的参数;改变扫描间距进行单层成型试验,选出熔池搭接均匀、熔池横向搭接率在30%‑50%且成型上表面粗糙度最小的扫描间距;打印试样块进行相对致密度检测,获得≥99.9%的成型工艺参数;制备试样明场像观察,筛选出在板条马氏体界形成连续薄膜状奥氏体的工艺参数;打印长方块时效处理,拉伸试验确定提高强度和塑性的工艺。
-
公开(公告)号:CN112935275A
公开(公告)日:2021-06-11
申请号:CN202110084484.2
申请日:2021-01-21
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种梯度TiNi形状记忆合金的电子束熔丝增材制造方法,属于增材制造技术领域。本发明以Ti50Ni50(at.%)合金丝为原材料,在电子束熔丝沉积设备上,在TA11纯钛基板上,按照CAD规划的路径,确定电子束熔丝沉积TiNi形状记忆合金的工艺窗口,并设置30s的层间冷却时间,以往复扫描的方式制备出一系列成形良好、组织致密、性能优异的梯度TiNi形状记忆合金。该方法对缩短加工流程、制备复杂构型的TiNi形状记忆合金部件具有极大的作用,且可以拓展到其他高熔点高活性合金的近净成形,实现复杂构型的结构‑功能一体化快速制备。
-
公开(公告)号:CN110202867B
公开(公告)日:2021-03-23
申请号:CN201910636756.8
申请日:2019-07-15
Applicant: 哈尔滨工业大学
Abstract: 一种Ti‑Al‑Nb层状复合材料及其制备方法,属于合金材料制备技术领域。所述方法:一、Ti箔、Al箔和Nb箔的表面清洗;二、Ti箔和Al箔表面磁控溅射;三、高Nb‑TiAl合金和Ti2AlNb合金的结构设计和叠层;四、将洗好的Ti箔、Al箔、Nb箔和按照设计好的高Nb‑TiAl合金、Ti2AlNb合金结构进行叠层、包覆、制备预制件;五、低温热处理;六、中温退火;七、高温热压即得。本发明可以近成型板材等其它复杂形状的Ti‑Al‑Nb合金层状复合材料。
-
公开(公告)号:CN108312665B
公开(公告)日:2020-06-16
申请号:CN201810119250.5
申请日:2018-02-06
Applicant: 哈尔滨工业大学
IPC: B32B15/04 , B32B15/20 , B32B9/00 , B32B9/04 , B32B33/00 , B32B37/06 , B32B37/10 , B32B38/18 , B32B38/16
Abstract: 多级结构Ti‑Al‑Cf层状复合材料的制备方法,它涉及一种复合材料的制备方法。本发明的是为了提供了一种多级结构Ti‑Al‑Cf层状复合材料的制备方法。制备方法如下:一、碳纤维布表面处理;二、Ti箔、Ti网与Al箔表面预处理;三、制备单元体;四、制备预制件;五、真空热压烧结,即得。本发明利用在Al熔点附近,熔融态的Al具有较好的流动性,在压力的作用下更易浸渗入碳纤维内部,形成充填充分,结合良好的碳纤维增强铝基复合材料;同时在压力的作用下,Ti箔、Ti网均与Al发生化学反应,连接成一个整体。因此,制备出的三维结构层状复合材料界面结合良好,界面强度高。本发明属于复合材料的制备领域。
-
公开(公告)号:CN111250854A
公开(公告)日:2020-06-09
申请号:CN202010085414.4
申请日:2020-02-10
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种用于电子束熔丝增材制造的局部冷却辅助装置及方法,装置包括水冷板、冷却箱、推杆电机和若干冷却单元,冷却箱固定在真空室的顶部,冷却箱半嵌入在真空室内,水冷板设置在冷却箱上,在水冷板内部布有蛇形水冷流道;冷却箱内设有伸缩罩、移动板和弹簧上支撑板。本发明通过冷却单元与构件表面接触导热,当大量冷却单元采用包裹式的柔性接触传热方式,使得散热速率显著提高;该装置灵活性强,适用于结构复杂的构件,同时散热效果不随增材高度的增加而减弱;本发明有效解决电子束熔丝增材制造中,由于真空环境导致的散热难、散热慢的问题,尤其是对于大尺寸复杂构件;防止组织和性能恶化,显著提高电子束熔丝增材制造的成形效率。
-
公开(公告)号:CN111250853A
公开(公告)日:2020-06-09
申请号:CN202010085413.X
申请日:2020-02-10
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种基于电子束熔丝增材制造的同步冷却装置及方法,装置包括设置在真空室内的移动装置和同步冷却系统,移动装置的上端部固定在真空室的顶部,同步冷却系统与移动装置连接,移动装置带动同步冷却系统上下移动设置,电子束熔丝增材制造时,同步冷却系统与电子束同步接触构件的上表面;同步冷却系统包括冷却箱、法兰卡箍、过渡器、夹紧装置、编织铜网和冷却液,过渡器的上端与冷却箱通过法兰卡箍相连,过渡器的下端通过夹紧装置与所述编织铜网相连;冷却箱包括设置在上部的水冷块和设置在下部的冷却腔,且通过水冷块的下端面分隔水冷块和冷却腔。本发明能够减少热累积,抑制晶粒粗化,节约散热时间,提高生产效率。
-
公开(公告)号:CN110722123A
公开(公告)日:2020-01-24
申请号:CN201911206368.2
申请日:2019-11-29
Applicant: 哈尔滨工业大学
Abstract: 薄壁圆环截面合金铸件原位离心铸造设备及离心铸造方法,本发明涉及一种合金铸件的离心铸造设备及离心铸造方法,目的是优化传统离心铸造的繁琐工艺,消除熔体转移及浇注时的安全隐患,降低铸件冷隔、夹杂、气孔等缺陷,避免浇道中合金的浪费,提高生产效率,降低成本。本发明原位离心铸造设备中合金原材料装入被固定在底盘上的石墨加热器内,加热器外侧放置保温筒,再外侧设置感应加热线圈,铸型置于加热器和保温筒的顶部,底盘圆心处固定一根限位导柱,通过旋拧轴向限位螺母使上压板下移与底盘一起固定中间各部件。本发明原位离心铸造方法是使合金原材料在离心装置中熔化并在离心力的作用下充满铸型型腔凝固成形,实现原位熔炼和原位离心的耦合。
-
公开(公告)号:CN108326262B
公开(公告)日:2019-12-31
申请号:CN201810146916.6
申请日:2018-02-12
Applicant: 哈尔滨工业大学
Abstract: 一种合金铸件超强行波磁场连续处理定向凝固设备,本发明涉及一种凝固设备,以解决现有的凝固设备无法有效同时满足净化合金熔体,消除偏析缺陷,消除缩松、缩孔以及保证合金铸件整体均匀性等需求,以及静置重力浇铸设备产生的浇口、浇道处材料损失的问题。本发明的熔炼保温装置(2)、超强行波磁场发生装置(1)和冷却结晶装置(3)由上至下依次设置,所述熔炼保温装置(2)的内腔、超强行波磁场发生装置(1)的内腔和冷却结晶装置(3)的内腔为相通的型腔(7),所述坩埚(5)位于型腔(7)中,且坩埚(5)与电机运动装置(6)连接,数个测温装置(4)均匀分布于型腔(7)的上、中、下三处位置。本发明用于汽车、军工、航空、航天等高精技术领域的合金铸件成形。
-
公开(公告)号:CN110239194A
公开(公告)日:2019-09-17
申请号:CN201910637522.5
申请日:2019-07-15
Applicant: 哈尔滨工业大学
Abstract: 一种高Nb-TiAl合金材料的制备方法,属于合金制备技术领域,本发明要解决制备Nb等合金元素分布均匀,近成型材料等其它复杂形状的高Nb-TiAl合金。利用磁控溅射技术结合箔冶金真空热压技术制备,即利用镀Nb或Nb合金的Ti箔和Al箔交替叠层、真空热压制成。方法:制备Nb或Nb合金靶材;对大尺寸Ti箔和Al箔进行表面清洗;在洗好的Ti箔和Al箔表面磁控溅射镀Nb或Nb合金;制备预制体:将磁控溅射后的Ti箔和Al箔裁剪出合适尺寸,然后交替叠层制备高Nb-TiAl合金材料预制体;低温热处理;中温热处理;高温退火保温获得高Nb-TiAl合金材料。本发明用于制备Nb等合金元素分布均匀及近成型材料等其它复杂形状的高Nb-TiAl合金。
-
公开(公告)号:CN108486411A
公开(公告)日:2018-09-04
申请号:CN201810576158.1
申请日:2018-06-06
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种Ni元素增强的高强耐蚀钛合金及其制备方法,合金名义成分为Ti-6Al-3Nb-2Zr-1Mo-xNi,所述钛合金含有下述质量百分比的组分:5.5~6.5%的Al,2.5~3.5%的Nb,1.5~2.5%的Zr,0.6~1.5%的Mo,0.1~0.5%的Ni,余量为Ti及不可避免的杂质。本发明中的高强耐蚀钛合金是一种新型近α型钛合金,其室温强度与Ti80(Ti-6Al-3Nb-2Zr-1Mo)合金对比,明显提高。铸态时,室温压缩强度优于铸态Ti80合金,为920-980MPa;锻态时,其室温拉伸、压缩屈服强度都优于锻态Ti80合金,室温拉伸强度为918.43MPa,室温压缩强度为975.21MPa,该合金有望应用于海洋工程装备,具有良好的应用前景。
-
-
-
-
-
-
-
-
-