Abstract:
Embodiments of an Evolved Node-B (eNB) to support Carrier Aggregation (CA) of a licensed frequency band and an unlicensed frequency band are disclosed herein. The eNB may transmit traffic packets on an unlicensed channel in the unlicensed frequency band to one or more User Equipments (UEs) assigned to the unlicensed channel. The eNB may receive, on the licensed frequency band, interference indicators for the unlicensed channel from at least a portion of the UEs assigned to the unlicensed channel. In addition, the eNB may transmit, on the licensed frequency band, a multicast vacate channel control message for the unlicensed channel. The message may be for reception at one or more of the UEs assigned to the unlicensed channel.
Abstract:
Briefly, in accordance with one or more embodiments, a fixed device performs a cell search to search for one or more cells on a network and determines a transmit power level to communicate with one of the cells of the network. The fixed device sets a frequency of updating the transmit power level for communication with a cell on the network, wherein the frequency of updating the transmit power level is reduced for the fixed device with respect to a mobile device.
Abstract:
Technology for a target evolved node B (eNB) operable to facilitate handover is disclosed. The target eNB can receive a handover request message to hand over a user equipment (UE) from the source eNB to the target eNB. The handover request message can include an evolved packet system (EPS) bearer group identifier (ID) indicating an EPS group bearer of the source eNB and associated with the UE, a last UE indicator to indicate whether the UE is a last UE of the source eNB to use the EPS group bearer, and a downlink (DL) traffic indicator to indicate whether the DL traffic for the UE during handover is negligible. The target eNB can perform a handover procedure to establish a connection with the UE based on at least one of the EPS bearer group ID, the last UE indicator, or the DL traffic indicator included in the handover request message.
Abstract:
An unlicensed spectrum usage monitoring and reporting method is disclosed. The unlicensed spectrum usage monitoring and reporting method employs a new logical entity in a Long Term Evolution (LTE) enhanced Node B (eNB) as well as a dedicated interface between the eNB and the Policy and Charging Enforcement Function (PCEF). The method employs a diameter-based protocol for communication between the eNB and the PCEF, and defines several new Attribute-Pair Values (AVPs) and message commands to enable exchange of unlicensed spectrum usage information for User Equipment (UE) operating in the LTE network.
Abstract:
A technology that is operable to release a licensed shared access (LSA) spectrum allocation in a communications network is disclosed. In one embodiment, an evolved node B (eNode B) is configured with circuitry configured to receive, from a spectrum release module located in an evolved packet core (EPC) of the communications network, a spectrum release message requesting the eNode B release one or more selected segments of an LSA spectrum. LSA spectrum release parameters are evaluated for releasing the one or more selected segments of the LSA spectrum. A LSA spectrum release schedule is determined based on the LSA spectrum release parameters. Selected secondary cells (SCells) are deactivated in the communications network based on the LSA spectrum release schedule to release the one or more selected segments of the LSA spectrum.
Abstract:
Methods and apparatuses for communicating in a wireless network include receiving full and differential System Information Blocks (SIBs) and updating a parameter that has changed based on the differential SIB. Further apparatuses include control circuitry to generate a first SIB and second SIB, the second SIB indicating information that has changed. Further, a method includes generating a full SIB and generating a differential SIB based on updated parameters.
Abstract:
Systems and methods to support intra-quality of service (QoS) class identifier (QCI) QoS-aware scheduling are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The eNB may schedule packets within a QCI according to information provided to the eNB by the UE. Packets in a QCI may be classified into one or more flows using the information. The flows may be prioritized based on which are most important to the UE. The UE may provide QoS parameters for each flow. The eNB may be schedule the packets based on which flow each packet is in and the QoS parameters for that flow. The associated QoS parameters may be prioritized, and more important QoS parameters may be met to the detriment of less important QoS parameters.
Abstract:
A proposed 3GPP LTE protocol enhancement disclosed herein realizes the full benefit of proposed dynamic frequency sharing systems by enhancing current handoff signaling in a 3GPP LTE standard for optimized UE reconnection during interrupted handoff from Licensed Shared Access (LSA) frequency bands to Primary Long Term Evolution (LTE) frequency bands during loss of LSA spectrum resources. A User Equipment (UE) comprises a transceiver configured to determine a connection state during a loss of LSA frequency spectrum, transmit a reconnection request message when the UE is in a state of established connection or a connection request message when the UE is in an idle state, the request message carrying a loss of LSA frequency band cause, optimally connect according to the loss of LSA frequency band cause, to a primary LTE frequency band, and transmit a connection or reconnection complete message.
Abstract:
Systems and methods are disclosed for communicating enhanced user equipment (UE) assistance information between nodes in wireless communication systems. The UE achieves power savings and latency requirements more effectively by communicating its preferences, constraints and/or requirements to an evolved Node B (eNodeB) in the form of UE assistance information. The UE assistance information may include, for example, an indication of a preferred set of discontinuous reception (DRX) settings, current data traffic conditions, expected data traffic conditions, power or performance preferences, and/or an indication of the UE's mobility between cells.
Abstract:
Systems and methods disclosed herein provide in-device co-existence interference avoidance for a wireless communication device in dual connectivity with a master node and a secondary node. Time-division multiplexing (TDM) assistance information sent by the wireless communication device is forwarded from the master node to the secondary node. The master node and/or the secondary node uses the TDM assistance information to determine a TDM solution for the in-device co-existence interference in the wireless communication device.