Abstract:
A packaged optical device includes a light source device emitting light to an object surface, a sensor chip receiving reflective light reflected from the object surface, and a non-lens transparency layer located in front of the sensor chip. The light and the reflective light have a first main optic axis and a second main optic axis, respectively, and the first main optic axis and the second main optic axis are configured to form the specular reflection configuration, thereby enhancing images received by the sensor chip. The non-lens transparency layer has a zone passed through by the second main optic axis, and transmittance of the zone is lower than that of other zones of the non-lens transparency layer, thereby preventing the sensor chip from being saturated.
Abstract:
A control system, a mouse and a control method thereof are provided. The control system comprises a dongle and the mouse. The dongle is wiredly connected to a host and has a first light source for emitting a first light. The mouse is wirelessly connected to the dongle and has a transmitter, a second light source for emitting a second light, an optical sensor and a processor. The optical sensor senses the first light at a first time interval to generate a first sensing signal and then also, senses the second light at a second time interval to generate a second sensing signal. The processor generates a first control signal and a second control signal according to the first sensing signal and the second sensing signal, respectively, and transmits them to the dongle via the transmitter so that the host receives the first and second control signals via the dongle.
Abstract:
An image sensing circuit includes floating node, switch circuit, capacitor(s), and counting circuit. The floating node receives image electric charge from a photosensitive pixel. The switch circuit is coupled between floating node and capacitor(s) to dynamically connect and disconnect floating node and capacitor(s). The capacitor(s) include(s) first terminal(s) connected to switch circuit and second terminal(s) connected to ground. The counting circuit counts the number of charging and discharging behavior of capacitor(s) according to dynamic switches of switch circuit wherein the switch circuit dynamically switches to make capacitor(s) be charged and discharged dynamically in response to one exposure time period to receive energy of image electric charge which is determined by the number of charging and discharging behavior of the capacitor(s) and the capacitor(s)' potential value measured finally.
Abstract:
Disclosed is a computer readable recording media recording at least one program. An automatic clean machine control method applied to an automatic clean machine can be performed while the program is executed. The automatic clean machine control method comprises: (a) controlling the automatic clean machine to acquire a map; (b) selecting at least part of the map as a region to be cleaned; and (c) controlling the automatic clean machine to perform a first clean operation to the region to be cleaned.
Abstract:
There is provided a thin biometric detection module, which is advantageous in being able to detect scattered light from body tissue after the light transmitting in the body tissue without additional optical mechanism placed on the semiconductor optical detection pixel of the detection module for biometric detection.
Abstract:
A method of increasing signal-to-noise ratio of a distance-measuring device includes a light-emitting component emitting a detecting light to a measured object during an emitting period for generating a reflected light, a delay period after the light-emitting component emitting the detecting light, a light-sensing component sensing the energy of the reflected light to generate a light-sensing signal, and obtaining a measured distance between the distance-measuring device and the measured object according to the energy of the detecting light and the light-sensing signal. Since the measured distance is longer than a predetermined shortest measured distance, the method can accordingly calculate a proper delay period for ensuring that the reflected light reaches the light-sensing component after the delay period. In this way, the light-sensing component does not sense the background light during the delay period, so that the signal-to-noise ratio of the light-sensing signal is improved.
Abstract:
An optical navigating apparatus, comprising: a displacement detecting apparatus, for determining if the optical navigating apparatus has displacement relative to an target, and for generating a displacement signal according to the displacement; and a touch control panel, for detecting a touch control operation of an user, wherein the touch control panel has a sampling rate and changes the sampling rate according to a control signal, wherein the sampling rate can be adjusted according to the displacement signal, where the sampling rate correspondingly decreases when the displacement signal indicates the displacement increases.
Abstract:
An electronic system that can automatically set a report rate, which comprises: a first electronic apparatus; a second electronic apparatus; a transmitting interface, wherein the second electronic apparatus transmits data to the first electronic apparatus via the transmitting interface; and a processing unit, for automatically setting a report rate of the second electronic apparatus or the transmitting interface according to a type of a software program that the first electronic apparatus executes.
Abstract:
A method of utilizing a palm characteristic to trigger security setting is disclosed in the present invention. The method is applied to a navigation device, and the navigation device is used to control a computer host. The method includes obtaining the palm characteristic, comparing the palm characteristic to a predetermined value, generating a security command according to a comparison, and determining whether to lock control function of the navigation device relative to the computer host by the security command.
Abstract:
A method capable of performing an automatic focus function upon a specific movable object in a real-time manner, the method being applicable to a photographic apparatus with the automatic focus function, includes: capturing real-time image within a field of view (FOV) of a lens; comparing images of a plurality of image areas of the real-time image with a feature image of the specific movable object to identify an image area corresponding to the feature image of the specific movable object; and, performing automatic focus on the identified image area.