Abstract:
An elevator system controller for efficient group supervisory control while avoiding collisions between two elevator cars in service in a single elevator shaft. The elevator system controller includes a risk calculating unit for calculating a risk of a collision between elevator cars in the same shaft when the elevator cars are responding to a new call for service, a car assigning unit for assignment of an elevator car to respond to the new call based on the risk of collision, and an operation control unit for controlling operation of the elevator cars based on the assignment by the car assigning unit. The risk of collision is calculated for each car, and the risk is recalculated based on a possibility of a withdrawal of one of the elevator cars to a position in the shaft where no collision can occur, based on a predicted arrival time of a car at the floor requiring service. Cars that have high risks of collision when the remaining cars in the same shaft cannot be withdrawn in time to a safe spot are removed as candidates for assignment to respond to the new call. An evaluation is carried out using several evaluation indexes, in addition to the risk of collision, to decide which car is to be assigned to respond to the new call. If a determination of a traffic condition indicates low usage of the elevator cars, one car in each shaft is forwarded to a rest position and paused.
Abstract:
A method for controlling an elevator where an elevator is allocated for the use of a passenger in a first optimization phase in such a way that a first cost function is minimized, a second optimization phase is performed, in which the route of the allocated elevator is optimized in such a way that a second cost function is minimized.
Abstract:
A method for allocating elevators in an elevator system, the elevator system including a group control system responsive to hall calls received from call input devices, and elevator-specific elevator controllers configured to control elevators based on commands issued by the group control system, wherein the method including generating a number of route alternatives based on calls active; calculating, by the elevator controllers, elevator-specific cost terms associated with the route alternatives; transmitting, by the elevator controllers, the cost terms to the group control system; and allocating, by the group control system, the hall calls to the elevators according to the route alternative giving the lowest allocation cost.
Abstract:
An exemplary method of controlling an elevator system includes determining that a new passenger requests elevator service from a departure floor to a destination floor. Any candidate elevator cars are ranked. A number of stops for each assigned passenger for a ranked candidate elevator car is determined if the new passenger were assigned to that car. A determination is made whether any ranked candidate elevator car is a qualified car that can accept the new passenger and limit a number of stops for each passenger assigned to that car to a desired maximum number of stops. The new passenger is assigned to a qualified car that has a most favorable ranking of any qualified cars.
Abstract:
Energy efficiency settings for an elevator installation can be determined based on, for example, a start floor for a trip, a destination floor for a trip, user identity information and/or a condition associated with one or more users. In at least some cases, portions of a building (e.g., one or more floors) are associated with one or more energy settings. In further cases, an occupant of a building is associated with one or more elevator energy settings. Some embodiments can be used with an escalator installation.
Abstract:
An exemplary method of controlling an elevator system includes determining that a new passenger requests elevator service a departure floor to a destination floor. Any candidate elevator cars are ranked. A number of stops for each assigned passenger for a ranked candidate elevator car is determined if the new passenger were assigned to that car. A determination is made whether any ranked candidate elevator car is a qualified car that can accept the new passenger and limit a number of stops for each passenger assigned to that car to a desired maximum number of stops. The new passenger is assigned to a qualified car that has a most favorable ranking of any qualified cars.
Abstract:
Energy efficiency settings for an elevator installation can be determined based on, for example, a start floor for a trip, a destination floor for a trip, user identity information and/or a condition associated with one or more users. In at least some cases, portions of a building (e.g., one or more floors) are associated with one or more energy settings. In further cases, an occupant of a building is associated with one or more elevator energy settings. Some embodiments can be used with an escalator installation.
Abstract:
An elevator system can be operated while recording the energy consumption of at least one energy consumer of the elevator system and at least one traffic situation of the elevator system. At least one energy consumption value is determined for the recorded energy consumption and the recorded traffic situation, and the calculated energy consumption value is output to at least one output means.
Abstract:
An elevator group control apparatus includes a parameter calculating unit for determining a weighting factor for an item to be evaluated, which is calculated from a running distance estimated by an estimation arithmetic operation unit by taking into consideration a relation between a running distance of an elevator and a passenger average waiting time, and an evaluation arithmetic operation unit for calculating a total evaluated value from an item to be evaluated of a passenger waiting time, an item to be evaluated of the running distance, and the weighting factor determined by the parameter calculating unit. The elevator group control apparatus selects an elevator whose total evaluated value is the best from among the plurality of elevators, and assigns a hall call to the selected elevator.
Abstract:
The present invention pertains to a method for optimal routing of the elevators in an elevator system in a situation where the supply power received by the system is limited e.g. due to emergency power operation. In the invention, routes are optimized by using a cost function to which has been added a term containing the summed instantaneous power consumed. Power consumption is monitored in real time, and the elevators need a start permission from the control system. A route alternative that exceeds the power limit is penalized in the cost function by a so-called penal term. With the elevator routing obtained as a result, the instantaneous power consumed by the system remains continuously below the set power limit. Some call can thus be postponed to be served later. By the method of the invention, the number of elevators serving passengers in an emergency power situation can be varied dynamically.