Abstract:
A flexible diffuser membrane for diffusing gas into a liquid includes a substrate covered wholly or partially by a thin fluorocarbon elastomer coating. The coating is applied after the substrate has been fully constructed and cured. The coating is then mixed with an adhesive catalyst and applied by spraying or in another suitable manner to the substrate. The substrate and coating are then heated to a temperature such as 350° F.-800° F. adequate to form a strong chemical, molecular and adhesive bond between the coating and substrate. Perforations are formed in the membrane, the substrate may be treated with a biocide allowing the uncoated edges of the perforations to be coated with the biocide and resist biological growth.
Abstract:
Membrane strip diffusers are disclosed, useful for example in aerating wastewater in activated sludge plants. These diffusers have membranes, diffuser bodies and gas conduits elongated in the same general direction. Such conduits may be attached to or formed integrally with the diffuser bodies. Gas chambers form beneath the membranes when they inflate, and these are separate from but communicate with the gas conduits, e.g., through passageways distributed along the lengths of the membrane supports. Preferably, the passageway flow cross-sections are small, thus tending toward uniform distribution of gas along the membrane's length. Ways to edge- and end-seal the membranes to the diffuser bodies are also disclosed.
Abstract:
A multi-layer membrane includes a fluorine containing layer and a substrate which are joined through spray coating and heat treatment in a multi-step technique.
Abstract:
A flexible aeration panel is described, which does not include a rigid support plate. The flexible aeration panel can comprise a first perforated, flexible sheet sealed to a second non-perforated flexible sheet at their peripheral edges, thereby defining one or more cavities that are in fluid communication with at least one gas inlet. The flexible aeration panel can be configured to produce preferably evenly spaced bubbles of gas when positioned in a liquid body. Applications include, but are not limited to, aeration of wastewater, lakes, streams, water basins and the like.
Abstract:
The present invention provides an aeration device comprising a rectangular elastic porous body, a support base supporting the elastic porous body from below and having an orifice for pressurized air, and a securing component which secures the elastic porous body to the support base integrally, wherein the support base comprises a supporting portion supporting the elastic porous body from below and an attaching portion connected to the supporting portion and attaching the supporting portion to a pressurized air distribution pipe, the rectangular elastic porous body having a box shape having an opening portion, and the supporting portion being disposed in an elastic porous body. In addition, the present invention provides an aeration system comprising two or more above described aeration devices installed on a pressurized air distribution pipe, wherein each aeration device is disposed contacting mutually with no space between.
Abstract:
A process for supplying bubbles to a membrane module and cleaning an aerator producing the bubbles includes, in repeated cycles, steps of producing bubbles from an aerator and reducing pressure in the aerator such that water in the tank enters the aerator.
Abstract:
An aeration system for a submerged membrane module has a set of aerators connected to an air blower, valves and a controller adapted to alternately provide a higher rate or air flow and a lower rate of air flow in repeated cycles. In an embodiment, the air blower, valves and controller, simultaneously provide the alternating air flow to two or more sets of aerators such that the total air flow is constant, allowing the blower to be operated at a constant speed. In another embodiment, the repeated cycles are of short duration. Transient flow conditions result in the tank water which helps avoid dead spaces and assists in agitating the membranes.
Abstract:
An aeration device for waste water (1) consists essentially of a carrier (2) with a flat, essentially rectangular surface (3) and of an air-permeable membrane (6) which is connected to the carrier (2). Between the membrane (6) and the carrier (2) there is formed an air chamber (7a, 7b). The rectangular, flat construction on the one hand permits a modular design of the aeration device (1) and further permits the manufacture of the aeration device with the coextrusion method.
Abstract:
Effluent to be treated is introduced into the top of a first bioreactor 10 through an inlet pipe 16 and, after passing through second and third bioreactors 11 and 12, passes through a settling device 17, the treated effluent then flowing over a depth control weir 18 into an outlet pipe 19. The three bioreactors 10, 11 and 12 and the settling device 17 are housed in a tank having three sets of vertically-staggered transverse partitions 21, 22, 23 and a transverse settling tank partition 24. Each set of staggered partitions 21, 22 and 23 are arranged so that the bioreactors are interconnected in series, the effluent preferably being constrained to pass downwardly through each matrix 13, 14, 15 in turn against an upward discharge of very fine air bubbles from aeration panels 28 which extend under substantially the whole of each matrix. Aerobic bacteria feeds on nutrients in the effluent and grows on the roughened walls of the cross-flow matrix and the air bubbles promote sloughing of the bacteria. The apparatus therefore comprises three or more separate total mixed bioreactors working in sequence, each serving to reduce the biological oxygen demand of all the effluent whereby the biological oxygen demand is progressively reduced.
Abstract:
An apparatus for injecting compressed air into a liquid comprises a tubular basic body such as a pipe that is surrounded by a perforated membrane through which air is distributed into wastewater and is connected to the nipple of a compressed air supply through a hollow and cylindrical member that transfers compressed air to the space between the membrane and the tubular basic body and also has a passageway for wastewater so that wastewater can flow through the tubular basic body, thereby avoiding stagnant areas of untreated wastewater.