Abstract:
A door opening and closing device having a rotational mechanism configured to switch a door between a closed position and an open position relative to a base member. The rotational mechanism has a supporting arm integral with the door; a sector gear portion provided on the arm; a rotating gear disposed on the arm at essentially a center of the arc of the sector gear; a first rack portion on the base member and configured to engage the sector gear; and a second rack portion on the base member. The second rack is essentially parallel to the first rack portion and separated by predetermined distance therefrom, the second rack being configured to engage the rotating gear.
Abstract:
A cover opening and closing mechanism switches a cover body on a corresponding surface of a main body between a closed position for closing the corresponding surface and an open position for opening the same. The cover opening and closing mechanism includes a forcing device for always urging the cover body toward the closed position; a push button; a switching device having a cam facing the button, an acceleration gear engaging a gear part provided on the cover body, and a striker; and a latch device for locking the striker in the open position of the cover body and releasing the lock when the button is pushed. The switching device switches the cover body from the closed position to the open position against a force of the forcing device.
Abstract:
In an opening-closing mechanism of a door member for shifting the door member from a closed position for closing an opening portion of a base member to an open position and vice versa, the door member includes a pair of arm portions. Each arm portion includes a circular arc shape gear and a rotary gear disposed in a center of the circular arc of the gear. The base member includes a first fixed gear portion with internal teeth engaging the circular arc shape gear portion, and a second fixed gear portion disposed inside the first fixed gear engaging the rotary gear. The arm portion is held to move vertically through engagements between the first fixed gear portion and the circular arc shape gear portion and between the rotary gear and the second fixed gear portion, so that the door member is shifted along a path corresponding to the first fixed gear portion.
Abstract:
A pivot-action damper which for example dampens the impact effect of the closing movement of doors, furniture doors or flaps displays excellent braking force or damping force, even over small angular regions as a result of an outer cylindrical body which encompasses an inner body which is pivotable in relation to said outer cylindrical body. Between the two bodies there are two chambers, separated from each other by a gap or a throttle position, with said chambers containing a liquid. This liquid is displaced from one chamber to the other as a result of the rotation of the two bodies in relation to each other.
Abstract:
The present invention relates to automatic door assemblies and swing operators therefor. One aspect of the invention provides a swing door operator that has an opening in the housing thereof for easy access to the operator motor. Another aspect of the invention provides a method for servicing a door operator. Another aspect of the invention provides a door operator with a spring force adjusting member that moves in the generally longitudinal direction of the spring structure. Another aspect of the invention provides a method for adjusting the spring force of the spring structure in a door operator. Another aspect of the invention provides a swing door operator with an adjustable stop member.
Abstract:
A device for opening and closing a pivotally mounted door leaf (2) or the like comprises an actuator, which is displaceably and/or rotatingly arranged in a housing (10) and connected to the door leaf and which, during displacement rotation, actuates said door leaf, and a drive motor (27) which is connected to the actuator for providing displacement/rotation thereof.
Abstract:
In an opening-closing mechanism of a door member for shifting the door member from a closed position for closing an opening portion of a base member to an open position and vice versa, the door member includes a pair of arm portions. Each arm portion includes a circular arc shape gear and a rotary gear disposed in a center of the circular arc of the gear. The base member includes a first fixed gear portion with internal teeth engaging the circular arc shape gear portion, and a second fixed gear portion disposed inside the first fixed gear engaging the rotary gear. The arm portion is held to move vertically through engagements between the first fixed gear portion and the circular arc shape gear portion and between the rotary gear and the second fixed gear portion, so that the door member is shifted along a path corresponding to the first fixed gear portion.
Abstract:
A self-locking memory circuit for a tri state data bus having multiple bit lines. The circuit includes a non-inverting buffer chip for connection to each bit line and a resistor having a predetermined electrical resistance connected across the buffer chip. The chip and resistor provide a predetermined impedance to the flow of electrical current in the self-locking circuit. The circuit changes its state when the current of the latest information on a bit line builds or lowers above or below threshold levels of the self-locking circuit.
Abstract:
A passenger van is equipped with a drive mechanism for power operation of a slideable side door. The drive mechanism has a flexible drive member that travels in a closed loop which includes travel through a center track that supports and guides a hinge and roller assembly that is attached to the rear of the side door. The flexible drive member has a cogged portion that is driven by an electric motor to open and close the side door. The remaining portion is uncogged for economy o f manufacture and for releasing the flexible drive member from a clutch of the hinge and roller assembly to open the side door manually very easily. An electromagnetic clutch may also be included to reduce manual operating effort.
Abstract:
A powered sliding device for a sliding door comprises a wire drum rotated by a motor, a wire cable connecting the wire drum and the sliding door, a clutch mechanism provided between the wire drum and the motor. The clutch mechanism has a first coupling state for opening the door, a second coupling state for closing the door, and an uncoupling state. The wire drum has a cylindrical shape having a substantially closed end and an opposite open end, and an inner space formed inside thereof. The clutch mechanism is substantially provided within the inner space. The clutch mechanism is displaced into the first coupling state when the motor rotates in a given direction and displaced into the second coupling state when the motor rotates in a direction opposite to the given direction. The clutch mechanism is returned to the uncoupling state from the first coupling state when the motor is rotated in the opposite direction by a predetermined amount, and is returned to the uncoupling state from the second coupling state when the motor is rotated in the given direction by the predetermined amount.