Abstract:
The invention relates to a method for controlled braking of an electrically powered lifting action in the event of a failure, such that at least one of the nominal values for “rotational direction” and/or “operating speed” and/or “door position” and/or “motor capacity” and/or “motor current” is ascertained and compared with an actual value, and such that a motorized braking process or motorized stopping process is triggered by a departure of the actual value from the nominal value that lies outside a predetermined range. In addition the invention relates to a device for applying said method.
Abstract:
An active break release device externally attached to a door controller. The door controller includes a housing for receiving a first motor which rotates a rotary shaft to reel the door; a braking device installed around the periphery of the rotary shaft. The active break release device comprises: at least a brake releasing rod, one end of which is to activate the braking device while the other end of which extends to the outside of the door controller; at least a second motor, for moving the other end of the brake releasing rod; a circuit having a backup power source used to temperately supply electricity to the second motor if electricity fails, so that the one end releases the braking.
Abstract:
A drive mechanism includes an electric motor, a rotor driven by the electric motor, and a worm screw driven by the rotor. The drive mechanism further includes a wheel driven by the worm screw, the wheel transmitting movement of the electric motor to a vehicle closure, and a clutch on the rotor connecting the worm screw to the electric motor or disconnecting the worm screw from the electric motor.
Abstract:
A system and method for minimizing door related injuries are disclosed. Briefly, a mechanism requiring little or no external power is used to vary the force needed to open a door. If an obstruction (i.e. a person, pet, etc) is within the sweep of the opening door, the force needed by the user to push open the door will be increased, to give the user tactile feedback that an accident may be imminent. The feedback mechanism can be implemented in a variety of ways, including embodiments that require no external power or battery. A sensor is used to detect the presence of an obstruction within the sweep of the door. In a further embodiment, a mechanism is used to slow or stop a door from closing if an obstruction (such as a finger) is in the return path of the door.
Abstract:
A powered sliding device includes a wire drum (16) connected to a vehicle sliding door (11) through wire cables (18, 19), a motor (14) for rotating the wire drum, a clutch mechanism (25) provided between the motor and the wire drum, a rotational member (85) rotated integrally with the wire drum, detection apparatus (86) for detecting the rotation of the rotational member, and a housing (74). The housing includes a first space (76) accommodating the wire drum and communicating with the outside of the housing through the wire cables and a second space accommodating the rotational member and the detection apparatus, and a housing body (73) provided between the first space and the second space which separates the first space and the second space.
Abstract:
Disclosed herein is a rotary damper for controlling the operating speed of an operating part, such as a power outlet or an ash tray, of a vehicle. The rotary damper uniformly controls the operating speed of an operating part having a complex track. The rotary damper includes an operating part mounted in the interior in a vehicle in such a manner that the operating part can be introduced or withdrawn, an operating part case for guiding a path of the operating part, a pinion gear mounted to one side of the operating part, and a guide rail rotatably mounted to the operating part case such that the pinion gear can be engaged with the guide rail.
Abstract:
An anti-pinch system of a vehicle closure includes a detection system for detecting pinching and a clutch to disconnect the vehicle closure from a closure driving mechanism following detection of pinching by the detection system. The closure drive mechanism can be disengaged to prevent an increase in pinching during the time required to reverse the movement of the closure driving mechanism.
Abstract:
This invention relates to a double-sided equipment for a braking system, comprising a first braking pad, a second braking pad, a braking component, a fixing spring component, a compression spring, and an electromagnet, wherein the braking component located between the first braking pad and the second braking pad is movable along the axle of the door operator but is unrotatable with respect to the door operator axle. As a result of the compression spring, the first braking pad and the braking component will be pushed together towards the second braking pad, thereby the braking component is clamped from its two sides by the two braking pads. When the first braking pad is retracted by the electromagnet, the fixing spring enables the braking component to separate from the second braking pad, causing the braking component to be fully separated from the first and second braking pads.
Abstract:
A power window system for a motor vehicle operated by a linear electric motor. In one form, a dual linear motor window actuator system includes left and right guidetracks which guide a window, and left and right linear motors connected to the guidetracks. In a second form, a single linear motor window actuator system includes left and right guidetracks which guide a window; a drive bar connected to the window; and a linear motor operatively interconnected with the drive bar. A solenoid operated window stop provides fixed positioning of the window except during actuation of the linear motor.
Abstract:
A drive system for swiveling a panel of a vehicle about a swivel axis includes a reversible drive motor, a rotor which can be driven to rotate about an axis of rotation by the drive motor, and a coil through which current can flow to produce an axial magnetic field, the coil being arranged coaxially to the axis of rotation. An armature arranged to move axially with respect to the rotor and the coil can be moved axially into contact with the rotor to produce an interlocking connection or a friction connection between the rotor and the armature. A drive wheel is arranged to rotate with the armature via a drive train, the drive wheel being arranged to swivel the panel.