Abstract:
An apparatus for controlling the flow of a fluid includes a LP fluid inlet (18) and a LP fluid outlet (9) connected to a flare/vent system. A LP flow line (20) connects the LP fluid inlet (18) to the LP inlet 6a of a jet pump (6). A supply of HP fluid is connected to jet pump inlet (6b), and a MP line (8) is connected to jet pump outlet (6c). A control unit (28) is configured to control operation of first and second LP flow control valves (4, 3) according to signals received from a flow meter (12), so that LP gas is diverted from the flare system to the LP inlet (6a) of the jet pump for pressurisation.
Abstract:
A self-regenerative combustion system comprising a single burner, capable of operating both during the combustion step and the waste gas aspiration step, and a valve with four ways and three positions, capable of switching the regeneration and the on/off control (oxydizing agent end and waste gas end). The system is provided for obtaining the maximum efficiency, flexibility, minimum fuel consumption and minimum environmental impact with reduced NOx emissions.
Abstract:
An underwater vehicle includes systems for harvesting ambient hydrostatic pressure and storing the same as a gas pressure in a compressed gas system and as a water pressure in a pressurized electrolysis system. The gas pressure is used to perform mechanical work or to generate electrical power via a prime mover. The water pressure is used to release pressurized hydrogen and oxygen gases via electrolysis. The pressurized hydrogen and oxygen gases are used in a combustion chamber to generate propulsion power for the underwater vehicle.
Abstract:
A system and method for providing fuel mixes a first fuel with a second fuel at a mixing point to create a mixed fuel having a first calorie content. A control valve is located upstream of the mixing point. A process system downstream of the mixing point processes the mixed fuel to create a processed mixed fuel having a second calorie content. A first control signal is reflective of the first calorie content of the mixed fuel. A second control signal is reflective of the second calorie content of the processed mixed fuel. A third control signal is reflective of the operating level of the combustion engine. A controller connected to the control valve operates the control valve based on the first, second, and third control signals.
Abstract:
The blast furnace gas burning facility prevents a wet type dust collector from freezing under such conditions that the temperature of blast furnace gas does not exceed the freezing lower-limit temperature of the wet type dust collector. The blast furnace gas burning facility 1 burns blast furnace gas discharged from a blast furnace by supplying the gas to a combustor 2 after removing dust with a wet type dust collector 7 and compressing the gas with a compressor 8. A fuel-gas heating channel 12 is disposed between the outlet side of the compressor and the inlet side of the wet type dust collector. When the temperature of the blast furnace gas flowing into the wet type dust collector is lower than a lower limit temperature, a high-temperature, high-pressure gas compressed by the compressor is diverged and supplied into the inlet side of the wet type dust collector.
Abstract:
A gas switch capable of adjusting fire intensity finely includes a gas switch capable of adjusting fire intensity finely, comprising a switch body inside which a guide is installed, a valve set that revolves inside the switch body and includes a hollow valve and a pilot valve moving elastically through the valve, a drive component installed inside the switch body, which contains a rotating rod that can move along and rotate round the same shaft of the valve set, a guide rod placed on the rotating rod and leaning on the guide, a regulating block installed movably at one end of the rotating rod and leaning against the pilot valve, and a connecting component for linking the drive component with the valve set flexibly.
Abstract:
Various systems and methods are described for a controlling a flow of reformate fuel in a fuel system which includes a reformer and a storage tank coupled to an engine in a vehicle. The system includes a pump located between the reformer and the storage tank that is selectively operated in order to reduce parasitic losses on the system.
Abstract:
A portable cross-fire burner flameworking device includes a table, two or more gas hookups, two or more regulator and flow meter pairs respectively connected so as to be able to receive gas from the gas hookups, two or more control valves respectively connected so as to be able to receive gas from the regulator and flow meter pairs, and two burners having burner heads each connected so as to be able to receive gas from the two or more control valves mounted on the table. Each burner head has a burner face, and the burner faces are oriented towards each other at a distance. The two or more gas hookups are connected to the table so as to be portable therewith, the two or more regulator and flow meter pairs are connected to on the table so as to be portable together therewith, the two or more control valves are connected to the table so as to be portable therewith, and the two burner heads are likewise connected to the table so as to be portable together therewith. At least one of the two burner heads is connected to the table via a moveable mount allowing the distance between the burner faces to be adjusted.
Abstract:
A device and method for controlling the flow of a gaseous fuel from a fuel supply to a pressurized combustion chamber. A fuel pump is included in the gas train from supply to chamber. The fuel pump increases the pressure of the gas to allow efficient injection into the chamber. The pump is modulated to control the fuel flow. Both alternating current and pulse-width-modulated direct current signals may be used to control the flow. The pump may be a piston pump or a diaphragm pump. Feedback may be provided from sensors that determine operating parameters of the engine and such sensor signals may be used by the controller to maintain a parameter, such as temperature, at a specified value. An acoustic filter can be included in the gas train to significantly reduce gas flow pulsations generated by the pump. This filter improves the uniformity of the combustion process.
Abstract:
A device and method for controlling the flow of a gaseous fuel from a fuel supply to a pressurized combustion chamber. A fuel pump is included in the gas train from supply to chamber. The fuel pump increases the pressure of the gas to allow efficient injection into the chamber. The pump is modulated to control the fuel flow. Both alternating current and pulse-width-modulated direct current signals may be used to control the flow. The pump may be a piston pump or a diaphragm pump. Feedback may be provided from sensors that determine operating parameters of the engine and such sensor signals may be used by the controller to maintain a parameter, such as temperature, at a specified value. An acoustic filter can be included in the gas train to significantly reduce gas flow pulsations generated by the pump. This filter improves the uniformity of the combustion process.