Abstract:
A real-time color comparator which performs color comparisons of sample objects to a reference color for the purpose of identification, sorting or matching. Two optical paths are positioned to collect the light from a reference object and a sample object and the light outputs from the two paths are directed onto a spherical dispersive element shown in the form of a concave diffraction grating that decomposes each light signal into its spectral constituents which are imaged on a dual photodetector array. The color signature from the reference and the color signature from the sample are compared.
Abstract:
A colorimeter for measuring color of an object, in particular for measuring the color of liquids such as paints in a process stream. In the colorimeter, a single analytical light beam, with its blue and red intensity ratio controlled through a feedback loop, is directed to a sample whose color is being measured. A portion of the analytical light beam is reflected from the sample into a grating monochromator which disperses the light beam into its spectra. A detector array is attached to the monochromator which converts the spectra of the light beam into discrete signals which are then multiplexed with instrument status and reference color signals into an A/D converter. The output of the A/D converter is then fed directly to a computer programmed to directly provide standard color values.
Abstract:
Disclosed is an endoscope including: a four-color separation prism configured to separate light from an object into three primary colors of light and infrared light; four image sensors configured to convert optical images of the separated three primary colors of light and an optical image of the separated infrared light into electrical signals; and an output device configured to output the converted electrical signals.
Abstract:
A multi-angle colorimeter (100) employs a multi-angle mode and a symmetrical arrangement mode in an optical arrangement. Light detection on both sides of the symmetrical arrangement is performed by a single photodetector unit (41). The photodetector unit (41) is used on both sides, and thus, the device becomes simpler, without any impact on individual difference in characteristics of multiple photodetector units. Conversely, elements for illumination can be used on both sides. Also in a case where multiple photodetector units are used, the size and cost of the device can be reduced with the use of a photodetector unit having a relatively low wavelength resolution as a photodetector unit to be used on one side. This enables to reduce an attitude error due to relative tilting of a measurement surface while reducing the size and cost of the device.
Abstract:
A spectral colorimetric apparatus includes a housing which includes a side wall. An outer surface of the side wall is an adjustment surface capable of adjusting a position of a light receiving member by moving in a state in which the light receiving member abuts on the adjustment surface. The light receiving member is supported by the side wall of the housing in a state in which the light receiving member abuts on the adjustment surface and receives a light beam that is dispersed by a concave surface reflection type diffraction element and passes through an opening portion. The adjustment surface is parallel to a tangential line at a part of a Rowland circle of the concave surface reflection type diffraction element, through which a light beam received by the light receiving member passes.
Abstract:
The invention relates to a grating optical sensor comprised of a lens (1) that reproduces an object space, of a diffractive hexagonal 3D grating optical modulator (4) in the image plane (5) of the lens (1), of a photoelectric receiver device (8), which is arranged in the near field behind the modulator (4) in accordance with the centrosymmetrically trichromatic diffraction orders (R, G, B), and of an evaluation device for the electrical signals generated by the individual receivers (8). The invention is characterized in that at least one light diffusion glass (9) is arranged in the pupillary plane of the lens (1) or in a pupillary plane conjugate thereto. The inventive sensor is used for conducting chromatometries with a color constancy performance via a thermal radiation source (17), which modifies the grating constants of the 3D grating (4) for a new white standard value.