Abstract:
Gas detector devices, systems, and methods using a Golay cell are described herein. One device includes a microphone having a front surface with an sound collecting aperture for receiving sound, a substrate, a gas cavity formed in the substrate such that the gas cavity is in gas communication with the sound collecting aperture and the front surface forms a side surface of the gas cavity, and a window abutting the substrate to form a side surface of the gas cavity.
Abstract:
An imaging flow cytometry apparatus and method which allows registering multiple locations across a cell, and/or across multiple flow channels, in parallel using radio-frequency-tagged emission (FIRE) coupled with a parallel optical detection scheme toward increasing analysis throughput. An optical source is modulated by multiple RF frequencies to produce an optical interrogation beam having a spatially distributed beat frequency. This beam is directed to one or more focused streams of cells whose responsive fluorescence, in different frequencies, is registered in parallel by an optical detector.
Abstract:
Disclosed is a composite particle for use in a marking that is suitable for identification/authentication purposes. The particle comprises at least one superparamagnetic portion and at least one thermoluminescent portion and optionally also a thermoconductive portion between the superparamagnetic and thermoluminscent portions.
Abstract:
To use an object information acquiring apparatus that has: a plurality of detection elements (300) that detect acoustic waves generated from an object irradiated with light from a light source (100) and output electric signals; a supporting member (400) that supports the plurality of detection elements so that the axes of directivity of at least part of the detection elements gather; an inputting unit (700) that receives an input of a measurement condition from a user; a selecting unit (500) that selects at least part of the plurality of detection elements in response to the measurement condition input by the user; and a processing unit (600) that acquires property information on the inside of the object, using electric signals output from the selected detection elements.
Abstract:
A gas sensor is proposed, which can detect a gas by a novel configuration while reduction in size is achieved. The gas sensor (1) does not need a light absorption path as in a prior art so that the size can be reduced correspondingly. Further, in the gas sensor (1), a gas is absorbed in an ionic liquid (IL), and a dielectric constant of the ionic liquid (IL) that changes by absorbing the gas can be measured according to a change in light intensity that occurs by a surface plasmon resonance phenomenon in a metal layer (7). Thus, the gas sensor (1) including the novel configuration that can detect a gas based on the change in the light intensity can be realized.
Abstract:
A system for measuring analytical reactions comprising a socket (51, 57) which is suitable for holding an optode array chip (40).The socket comprises electrical contacts that mate with electrical contacts on a chip when such a chip is inserted into the socket. The socket furthermore permits fluid from a fluidics system (33) and illumination from an illumination system (53) to be for delivered to a chip when such a chip is inserted into the socket. The socket may be of the clam shell type.
Abstract:
A gas sensor is proposed, which can detect a gas by a novel configuration while reduction in size is achieved. The gas sensor (1) does not need a light absorption path as in a prior art so that the size can be reduced correspondingly. Further, in the gas sensor (1), a gas is absorbed in an ionic liquid (IL), and a dielectric constant of the ionic liquid (IL) that changes by absorbing the gas can be measured according to a change in light intensity that occurs by a surface plasmon resonance phenomenon in a metal layer (7). Thus, the gas sensor (1) including the novel configuration that can detect a gas based on the change in the light intensity can be realized.
Abstract:
A system for measuring analytical reactions comprising a socket (51, 57) which is suitable for holding an optode array chip (40).The socket comprises electrical contacts that mate with electrical contacts on a chip when such a chip is inserted into the socket. The socket furthermore permits fluid from a fluidics system (33) and illumination from an illumination system (53) to be for delivered to a chip when such a chip is inserted into the socket. The socket may be of the clam shell type.
Abstract:
A system for measuring analytical reactions comprising a socket (51, 57) which is suitable for holding an optode array chip (40).The socket comprises electrical contacts that mate with electrical contacts on a chip when such a chip is inserted into the socket. The socket furthermore permits fluid from a fluidics system (33) and illumination from an illumination system (53) to be for delivered to a chip when such a chip is inserted into the socket. The socket may be of the clam shell type.
Abstract:
A system for measuring analytical reactions comprising a socket (51, 57) which is suitable for holding an optode array chip (40).The socket comprises electrical contacts that mate with electrical contacts on a chip when such a chip is inserted into the socket. The socket furthermore permits fluid from a fluidics system (33) and illumination from an illumination system (53) to be for delivered to a chip when such a chip is inserted into the socket. The socket may be of the clam shell type.